Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Artificial Intelligence and Soft Computing Research

The Journal of Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology

4 Issues per year

Open Access
Online
ISSN
2083-2567
See all formats and pricing
More options …

Design of Fuzzy Rule-based Classifiers through Granulation and Consolidation

Andri Riid
  • Laboratory for Proactive Technologies, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürgo-Sören Preden
  • Laboratory for Proactive Technologies, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-23 | DOI: https://doi.org/10.1515/jaiscr-2017-0010

Abstract

This paper addresses the issue how to strike a good balance between accuracy and compactness in classification systems - still an important question in machine learning and data mining. The fuzzy rule-based classification approach proposed in current paper exploits the method of rule granulation for error reduction and the method of rule consolidation for complexity reduction. The cooperative nature of those methods - the rules are split in a way that makes efficient rule consolidation feasible and rule consolidation itself is capable of further error reduction - is demonstrated in a number of experiments with nine benchmark classification problems. Further complexity reduction, if necessary, is provided by rule compression.

Keywords: pattern recognition; fuzzy classification; complexity reduction

References

  • [1] J. Abonyi, J. A. Roubos, and F. Szeifert, Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization, International Journal of Approximate Reasoning, 23:1–21, 2003CrossrefGoogle Scholar

  • [2] S. Aeberhard, D. Coomans, and O. de Vel, Comparative analysis of statistical pattern recognition methods in high dimensional settings, Pattern Recognition, 27(8):1065–1077, 1994CrossrefGoogle Scholar

  • [3] C. C. Aggarwal, Data Classification: Algorithms and Applications, Chapman & Hall/CRC, 1st edition, 2014Google Scholar

  • [4] J. Alcala-Fdez, R. Alcala, and F. Herrera, A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning, IEEE Transactions on Fuzzy Systems, 19(5):857–872, 2011CrossrefWeb of ScienceGoogle Scholar

  • [5] K. Bache and M. Lichman, UCI machine learning repository, http://archive.ics.uci.edu/ml, 2013

  • [6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, 1984Google Scholar

  • [7] B.-C. Chien, J.-Y. Lin, and W.-P. Yang, A classification tree based on discriminant functions, Journal of Information Science and Engineering, 222(3):573–594, 2006Google Scholar

  • [8] S.-B. Cho, Neural-network classifiers for recognizing totally unconstrained handwritten numerals, IEEE Transactions on Neural Networks, 8(1):43–53, 1997CrossrefGoogle Scholar

  • [9] W. W. Cohen, Fast effective rule induction, In Proceedings of the Twelfth International Conference on Machine Learning, pages 115–123, Morgan Kaufmann, 1995Google Scholar

  • [10] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 20(3):273–297, September 1995CrossrefGoogle Scholar

  • [11] T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, 13(1):21–27, September 2006CrossrefGoogle Scholar

  • [12] R. Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973Google Scholar

  • [13] I. W. Evett and E. J. Spiehler, Rule induction in forensic science, Technical report, Central Research Establishment, Home Office Forensic Science Service, 1987Google Scholar

  • [14] R. A. Fisher, The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7(2):179–188, 1936CrossrefGoogle Scholar

  • [15] J. H. Gennari, P. Langley, and D. Fisher, Models of incremental concept formation, Artificial Intelligence, 40(1–3):11–61, 1989CrossrefGoogle Scholar

  • [16] S. Guillaume and B. Charnomordic, Learning interpretable fuzzy inference systems with FisPro, Information Sciences, 180(20):4409–4427, 2011CrossrefWeb of ScienceGoogle Scholar

  • [17] J. Hühn and E. Hüllermeier, FURIA: an algorithm for unordered fuzzy rule induction, Data Mining and Knowledge Discovery, 19(3):293–319, 2009Google Scholar

  • [18] H. Ishibuchi, T. Nakashima, and T. Murata, Three-objective genetic-based machine learning for linguistic rule extraction, Information Sciences, 136(1–4):109–133, 2001Google Scholar

  • [19] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, Selecting fuzzy if-then rules for classification problems using genetic algorithms, IEEE Transactions on Fuzzy Systems, 3(3):260–270, 1995CrossrefGoogle Scholar

  • [20] H. Ishibuchi and T. Yamamoto, Rule weight specification in fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems, 13(4):428–435, 2005CrossrefGoogle Scholar

  • [21] L. Kuncheva, Fuzzy Classifier Design, Springer-Verlag, Heidelberg, 2000Google Scholar

  • [22] K. Larsen, Generalized naive bayes classifiers, SIGKDD Explorations, 7(1):76–81, 2005CrossrefGoogle Scholar

  • [23] R. P. Lippmann, Neural network classifiers for speech recognition, The Lincoln Laboratory Journal, 1:107–124, 1988Google Scholar

  • [24] C. Mencar, C. Castiello, R. Cannone, and A. M. Fanelli, Interpretability assessment of fuzzy knowledge bases: A cointension based approach, International Journal of Approximate Reasoning, 52(4):501–518, 2011CrossrefWeb of ScienceGoogle Scholar

  • [25] J. R. Quinlan, Induction of decision trees, Machine Learning, 1(1):81–106, 1986Web of ScienceCrossrefGoogle Scholar

  • [26] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993Google Scholar

  • [27] Y. Ren, L. Zhang, and P. N. Suganthan, Ensemble classification and regression - recent developments, applications and future directions, IEEE Computational Intelligence Magazine, 11(1):41–53, 2016Web of ScienceCrossrefGoogle Scholar

  • [28] A. Riid and J.-S. Preden, Interpretability improvement of fuzzy rule-based classifiers via rule compression, In Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology, pages 162–169, Gijon, Spain, 2015Google Scholar

  • [29] A. Riid and M. Sarv, Determination of regional variants in the versification of estonian folksongs using an interpretable fuzzy rule-based classifier, In Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), pages 61–66, Milan, Italy, 2013Google Scholar

  • [30] L. Rokach, Pattern Classification Using Ensemble Methods, volume 75 of Series in Machine Perception and Artifical Intelligence, World Scientific Publishing Company, Singapore, 2010Google Scholar

  • [31] H. Roubos, M. Setnes, and J. Abonyi, Learning fuzzy classification rules from data, Information Sciences, 150(1–2):77–93, 2003Google Scholar

  • [32] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes, Using the ADAP learning algorithm to forecast the onset of diabetes mellitus, In Proceedings of the Symposium on Computer Applications and Medical Care, pages 261–265, Los Alamitos, CA, 1988Google Scholar

  • [33] W. N. Street, W. H. Wolberg, and O. L. Mangasarian, Nuclear feature extraction for breast tumor diagnosis, In Proceedings of the IS&T 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861–870, San Jose, CA, 1993Google Scholar

  • [34] P. D. Turney, Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm, Journal of Artificial Intelligence Research, 2:369–409, 1995Google Scholar

  • [35] W. H Wolberg and O. L. Mangasarian, Multisurface method of pattern separation for medical diagnosis applied to breast cytology, Proceedings of the National Academy of Sciences, 87:9193–9196, 1990Google Scholar

About the article

Published Online: 2017-02-23

Published in Print: 2017-04-01


Citation Information: Journal of Artificial Intelligence and Soft Computing Research, Volume 7, Issue 2, Pages 137–147, ISSN (Online) 2083-2567, DOI: https://doi.org/10.1515/jaiscr-2017-0010.

Export Citation

© 2017 Academy of Management (SWSPiZ), Lodz. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in