Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Artificial Intelligence and Soft Computing Research

The Journal of Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology

4 Issues per year

Open Access
See all formats and pricing
More options …

MIDACO Parallelization Scalability on 200 MINLP Benchmarks

Martin Schlueter / Masaharu Munetomo
Published Online: 2017-03-20 | DOI: https://doi.org/10.1515/jaiscr-2017-0012


This contribution presents a numerical evaluation of the impact of parallelization on the performance of an evolutionary algorithm for mixed-integer nonlinear programming (MINLP). On a set of 200 MINLP benchmarks the performance of the MIDACO solver is assessed with gradually increasing parallelization factor from one to three hundred. The results demonstrate that the efficiency of the algorithm can be significantly improved by parallelized function evaluation. Furthermore, the results indicate that the scale-up behaviour on the efficiency resembles a linear nature, which implies that this approach will even be promising for very large parallelization factors. The presented research is especially relevant to CPU-time consuming real-world applications, where only a low number of serial processed function evaluation can be calculated in reasonable time.

Keywords: MINLP; optimization; MIDACO; parallelization


  • [1] Babu B., Angira A., A differential evolution approach for global optimisation of minlp problems, In: Proceedings of the Fourth Asia Pacific Conference on Simulated Evolution and Learning (SEAL 2002), Singapore, 2002, pp. 880–884.Google Scholar

  • [2] Cardoso M.F., Salcedo R.L., Azevedo S.F., Barbosa D., A simulated annealing approach to the solution of MINLP problems, Computers Chem. Engng. 12(21), 1997, pp. 1349–1364.CrossrefGoogle Scholar

  • [3] Costa L., Oliveira P., Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems, Comput Chem Eng, 25(23), 2001, 257-266.CrossrefGoogle Scholar

  • [4] Deep K., Krishna P.S., Kansal M.L., Mohan C., A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput., 212(2), 2009, pp. 505–518.Web of ScienceGoogle Scholar

  • [5] European Space Agency (ESA) and Advanced Concepts Team (ACT), Gtop database - global optimisation trajectory problems and solutions, Software available at http://www.esa.int/gsp/ACT/inf/op/globopt.htm, 2011.

  • [6] Glover F., Parametric tabu-search for mixed integer programs, Comput Oper Res 33(9), 2006, 24492494.CrossrefWeb of ScienceGoogle Scholar

  • [7] Gupta S., Tan G., A scalable parallel implementation of evolutionary algorithms for multi-objective optimization on GPUs, Evolutionary Computation (CEC), IEEE Congress on, Sendai, 2015, pp. 1567–1574.Google Scholar

  • [8] Quinn J.M., Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2003.Google Scholar

  • [9] GAMS MINLPlib - A collection of Mixed Integer Nonlinear Programming models. Washington, DC, USA; software available at http://www.gamsworld.org/minlp/minlplib.htm, 2016.

  • [10] Laessig J., Sudholt D., General upper bounds on the runtime of parallel evolutionary algorithms, Evolutionary Computation, vol. 22, no. 3, 2014, pp. 405-437.Google Scholar

  • [11] Liang B., Wang J., Jiang Y., Huang D., Improved Hybrid Differential Evolution-Estimation of Distribution Algorithm with Feasibility Rules for NLP/MINLP, Engineering Optimization Problems, Chin. J. Chem. Eng. 20(6), 2012, pp. 1074–1080.Google Scholar

  • [12] Mohamed A.W., An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems. Int. J. Mach. Learn. & Cyber., 2015, pp. 1–19.Google Scholar

  • [13] Munawar A., Redesigning Evolutionary Algorithms for Many-Core Processors Ph.D. Thesis, Graduate School of Information Science and Technology, Hokkaido University, Japan, 2012.Google Scholar

  • [14] Du X., Ni Y., Yao Z., Xiao R., High performance parallel evolutionary algorithm model based on MapReduce framework, Int. J. Computer Applications in Technology, Vol. 46, No. 3, 2013, pp. 290–296.Google Scholar

  • [15] Powell D., Hollingsworth J., A NSGA-II, web-enabled, parallel optimization framework for NLP and MINLP, Proceedings of the 9th annual conference on Genetic and evolutionary computation, 2007, pp. 2145–2150.Google Scholar

  • [16] Sakuray Pais M., Yamanaka K., Rodrigues Pinto E., Rigorous Experimental Performance Analysis of Parallel Evolutionary Algorithms on Multicore Platforms, In IEEE Latin America Transactions, vol. 12, no. 4, 2014, pp. 805–811.Google Scholar

  • [17] Schlueter M., Egea J.A., Banga J.R., Extended ant-colony optimization for non-convex mixed integer nonlinear programming, Comput. Oper. Res. 36(7), 2009, 2217–2229.Web of ScienceCrossrefGoogle Scholar

  • [18] Schlueter M., Gerdts M., The Oracle Penalty Method. J. Global Optim. 47(2), 2010, 293–325.Web of ScienceCrossrefGoogle Scholar

  • [19] Schlueter, M., Gerdts, M., Rueckmann J.J., A Numerical Study of MIDACO on 100 MINLP Benchmarks, Optimization 7(61), 2012, pp. 873–900.Google Scholar

  • [20] Schlueter M., Erb S., Gerdts M., Kemble S., Rueckmann J.J., MIDACO on MINLP Space Applications, Advances in Space Research, 51(7), 2013, 1116–1131.Google Scholar

  • [21] Schlueter M., MIDACO Software Performance on Interplanetary Trajectory Benchmarks, Advances in Space Research, 54(4), 2014, 744–754.Google Scholar

  • [22] Schlueter M., MIDACO Solver - Global Optimization Software for Mixed Integer Nonlinear Programming, Software available at http://www.midaco-solver.com, 2016.

  • [23] Schlueter M., Munetomo M., Numerical Assessment of the Parallelization Scalability on 200 MINLP Benchmarks, Proc. of the IEEE-CEC2016 Conference, Vancouver, Canada, 2016.Google Scholar

  • [24] K. Schittkowski, A Collection of 200 Test Problems for Nonlinear Mixed-Integer Programming in Fortran (User Guide), Report, Department of Computer Science, University of Bayreuth, Bayreuth, 2012.Google Scholar

  • [25] K. Schittkowski, NLPQLP - A Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search (User Guide), Report, Department of Computer Science, University of Bayreuth, Bayreuth, 2009.Google Scholar

  • [26] K. Socha and M. Dorigo, Ant colony optimization for continuous domains, Eur. J. Oper. Res. 85, 2008, pp. 1155–1173.CrossrefGoogle Scholar

  • [27] Sudholt D., Parallel Evolutionary Algorithms, In Janusz Kacprzyk and Witold Pedrycz (Eds.): Handbook of Computational Intelligence, Springer, 2015.Google Scholar

  • [28] Wasanapradit T., Mukdasanit N., Chaiyaratana N., Srinophakun T., Solving mixed-integer nonlinear programming problems using improved genetic algorithms, Korean J. Chem. Eng. 28(1), 2011, 32–40.Web of ScienceGoogle Scholar

  • [29] Yiqing L., Xigang Y., Yongjian L., An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints, Comp. Chem. Eng. 3(31), 2007, 153–162.Google Scholar

  • [30] Young C.T., Zheng Y., Yeh C.W., Jang S.S., Information-guided genetic algorithm approach to the solution of MINLP problems, Ind. Eng. Chem. Res. 46, 2007, pp. 1527–1537.CrossrefWeb of ScienceGoogle Scholar

  • [31] Yingyong Z., Yongde Z., Qinghua L., Jingang J., Guangbin Y., Improved Multi-objective Genetic Algorithm Based on Parallel Hybrid Evolutionary Theory, International Journal of Hybrid Information Technology Vol.8, No.1, 2015, pp. 133–140.Google Scholar

  • [32] Yue T., Guan-Zheng T., Shu-Guang D., Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems. J. Central South Univ., 2014, 21:2731–2742.Google Scholar

About the article

Received: 2016-09-16

Accepted: 2016-11-15

Published Online: 2017-03-20

Published in Print: 2017-07-01

Citation Information: Journal of Artificial Intelligence and Soft Computing Research, Volume 7, Issue 3, Pages 171–181, ISSN (Online) 2083-2567, DOI: https://doi.org/10.1515/jaiscr-2017-0012.

Export Citation

© 2017 Academy of Management (SWSPiZ), Lodz. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in