Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Mathematics, Statistics and Informatics

The Journal of University of Saint Cyril and Metodius

Editor-in-Chief: Kvasnicka, Vladimír

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.02

Open Access
Online
ISSN
1339-0015
See all formats and pricing
More options …

Diagonal Scaling of Ill-Conditioned Matrixes by Genetic Algorithm

Behrouz Vajargah / Mojtaba Moradi
Published Online: 2012-08-13 | DOI: https://doi.org/10.2478/v10294-012-0005-3

Diagonal Scaling of Ill-Conditioned Matrixes by Genetic Algorithm

The purpose of this article is to use genetic algorithm for finding two invertible diagonal matrices D1 and D2 such that the scaled matrix D1AD2 approaches to minimum condition number.

Keywords: Ill conditioned matrix; Condition number; Diagonal scaling; Genetic algorithm

  • F. L. BAUER, (1963), Optimally scaled matrices, Numerische Mathematik, 5, 7387.Google Scholar

  • F. L. BAUER, (1969), Remarks on optimally scaled matrices, Numerische Mathematik, 13, 13.Google Scholar

  • D. R. Braatz, Manfred Morari, (1994), Minimizing the Euclidean Condition Number. SIAM Journal on Control and Optimization, 32(6):17631768.Google Scholar

  • P. A. Businger, (1968), Matrices Which Can Be Optimally Scaled. Numerische Mathematik, 12:346348.Google Scholar

  • Chin-Chieh Chiang, John P. Chandler, An Approximate Equation for the Condition Numbers of Well-scaled Matrices Proceedings of The 2008 IAJC-IJME International Conference.Google Scholar

  • A. Chutarat, (2001), Experience of Light: The Use of an Inverse Method and a Genetic Algorithm in Daylighting Design, Ph.D. Thesis, Dept. of Architecture, MIT, Cambridge, MA.Google Scholar

  • A. R. CURTIS AND J. K. REID, (1972), On the automatic scaling of matrices for Gaussian elimination, J. Inst. Maths. Applics., 10, 118124.Google Scholar

  • I. S. DUFF, A. M. ERISMAN, AND J. K. REID, (1986), Direct Methods for Sparse Matrices, Oxford University Press, London.Google Scholar

  • I. S. DUFF AND J. KOSTER, (1999), On algorithms for permuting large entries to the diagonal of a sparse matrix, Tech. Rep. RAL-TR-1999-030, Rutherford Appleton Laboratory. SIAM Journal on Matrix Analysis and Applications.Google Scholar

  • Gero, J., and Radford, A. (1978), A Dynamic Programming Approach to the Optimum Lighting Problem, Eng. Optimize. 3(2), pp. 71-82.Google Scholar

  • HSL, (2000), A collection of Fortran codes for large scale scientific computation. http://www.cse.clrc.ac.uk/Activity/HSL

  • D. Ruiz, A scaling algorithm to equilibrate both rows and columns norms in matrices, Tech. Rep. RAL-TR-2001-034, Rutherford Appleton Laboratory, 2001.Google Scholar

  • R. Rump, Optimal scaling for p-norms and componentwise distance to singularity, IMA J. Numer. Anal. 23 (2003), pp. 19.Google Scholar

  • M. H. SCHNEIDER AND S. ZENIOS, (1990), A comparative study of algorithms for matrix balancing, Operations Research, 38, 439455.Google Scholar

  • A. VAN DER SLUIS, (1969), Condition Numbers and Equilibration of Matrices, Numer. Math., 14, 1423.Google Scholar

  • Watson, G. A. (1991), An Algorithm for Optimal 2 Scaling of Matrices. IMA J. Numer. Anal., 11:481492.Google Scholar

About the article


Published Online: 2012-08-13

Published in Print: 2012-05-01


Citation Information: , ISSN (Print) 1336-9180, DOI: https://doi.org/10.2478/v10294-012-0005-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chein-Shan Liu
Engineering Analysis with Boundary Elements, 2014, Volume 40, Page 62

Comments (0)

Please log in or register to comment.
Log in