Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Mathematics, Statistics and Informatics

The Journal of University of Saint Cyril and Metodius

Editor-in-Chief: Kvasnicka, Vladimír

2 Issues per year

Mathematical Citation Quotient (MCQ) 2016: 0.02

Open Access
See all formats and pricing
More options …

Minimize Traffic Congestion: An Application of Maximum Flow in Dynamic Networks

K. Kaanodiya / Mohd Rizwanullah
Published Online: 2012-08-13 | DOI: https://doi.org/10.2478/v10294-012-0007-1

Minimize Traffic Congestion: An Application of Maximum Flow in Dynamic Networks

An important characteristic of a network is its capacity to carry flow. What, given capacities on the arcs, is the maximum flow that can be sent between any two nodes? The dynamic version of the maximum flow problem on networks that generalizes the well-known static one. This basic combinatorial optimization problem has a large implementation for many practical problems. Traffic congestion is a consequence of the nature of supply and demand: capacity is time consuming and costly to build and is fixed for long time periods, demand fluctuates over time, and transport services cannot be stored to smooth imbalances between capacity and demand. In this paper, I tried to solve the traffic congestion problem i.e. Maximum flow of goods in a dynamic network with the help of a Lingo Model. The same can be generalized for the large product if the software supports the systems.

Keywords: Dynamic networks; network flow; dynamic flows; flows over time; maximum flows; LINGO; Traffic congestion

  • Ahuja, R., Magnati, T., Orlin, J., Network Flows. Prentice-Hall, Englewood Cliffs, 1993.Google Scholar

  • Aronson, J., A survey of dynamic network flows. Ann. Oper. Res., vol. 20, 1989, pp. 1-66. 395 M. A. Fonoberova, D. D. Lozovanu.CrossrefGoogle Scholar

  • Aumann, Y. And Rabani, Y. 1998. An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27, 1, 291-301.Google Scholar

  • Aronson, J. E., A survey of dynamic network flows, Annals of Operations Research 20 (1989) 1-66.CrossrefGoogle Scholar

  • Ford, L., Fulkerson, D., Flows in Networks. Princeton University Press, Princeton, NJ, 1962.Google Scholar

  • Ben-Akiva, M., A. de Palma and I. Kaysi (1991). Dynamic network models and driver information systems. Transportation Research A, 25A(5), 251-266.Google Scholar

  • Dahlgren Lab of U. S. Navy, Personal communications 2001.Web of ScienceGoogle Scholar

  • Ford, L., Fulkerson, D., Constructing maximal dynamic flows from static flows. Operation Res., vol. 6, 1958, p. 419-433.Google Scholar

  • Fleisher, L., Skutella, M., The quickest multi-commodity flow problem. Integer programming and combinatorial optimization, Springer, Berlin, 2002, p. 36-53.Google Scholar

  • Fleischer, L., Universally Maximum Flow with Piecewise-Constant Capacities. Networks, vol. 38, no. 3, 2001, pp. 115-125.CrossrefGoogle Scholar

  • G. Bretti, R. Natalini, and B. Piccoli, "Numerical algorithms for simulations of a traffic model on road networks", J. Comput. Appl. Math., 2007, 210, (1-2), pp. 71-77.Web of ScienceGoogle Scholar

  • Goldberg, A., Tarjan, R., A New Approach to the Maximum-Flow Problem. Journal of the Association for Computing Machinery, vol. 35, no. 4, 1988, pp. 921-940.CrossrefGoogle Scholar

  • Garg, N., Vazarani, V., And Yannakakis, M. 1996. Approximate max-flow min-(multi) cut theorems and their applications. SIAM J. Comput. 25, 235-251.CrossrefGoogle Scholar

  • Hoppe, B. and Tardos, E., The quickest transsipment problem, Mathematics of Operations Research 25 (2000) 36-62.CrossrefGoogle Scholar

  • Hoppe, B., Tardos, E., The quickest transshipment problem. Mathematics of Operations Research, vol. 25, 2000, p. 36-62.CrossrefGoogle Scholar

  • Kohler, E. and Skutella, M., Flows over time with load-dependent transit times, Proceedings of SODA'02 (2002) 174-183.Google Scholar

  • Kumar, S., Gupta, P., An Incremental Algorithm for the Maximum Flow Problem. Journal of Mathematical Modeling and Algorithms. vol. 2, 2003, pp. 1-16.Google Scholar

  • Leighton, F. T., Makedon, F., Plotkin, S., Stein, C., Tardos, E., And Tragoudas, S. 1992. Fast approximation algorithms for multi-commodity flow problems. J. Comput. Syst. Sci. 50, 228-243.Google Scholar

  • Lindsey, R. and E. T. Verhoef (2000). Congestion modeling. Forthcoming in: Handbook of Transport Modeling, Vol. 1. (D. A. Hensher and K. J. Button, eds.), Elsevier Science, Oxford.Google Scholar

  • Lozovanu, D., Stratila, D., Optimal flow in dynamic networks with nonlinear cost functions on edges. Analysis and optimization of differential systems. (Edited by V. Barbu, I. Lesiencko), ISBN 1-4020-7439-5. Klnwer Academic Publissers, 2003, p. 247-258.Google Scholar

  • Lozovanu, D., Stratila, D., The minimum-cost flow problem on dynamic networks and algorithm for its solving. Bul. Acad. Stiinte Repub. Mold., Mat., vol. 3, 2001, p. 38-56.Google Scholar

  • Laih, C-H. (1994). Queuing at a bottleneck with single- and multi-step tolls. Transportation Research A, 28A(3), 197-208.Google Scholar

  • Maria A. Fonoberova, Dmitrii D. Lozovanu, "The maximum flow in dynamic networks", Computer Science Journal of Moldova, vol.12, no.3 (36), 2004.Google Scholar

  • Mazzoni, G., Pallottino, S., Scutella, M., The maximum flow problem: A maxpreflow approach. European Journal of Operational Research, vol. 53, 1991, pp. 257-278.CrossrefWeb of ScienceGoogle Scholar

  • Minieka, E., Dynamic network flows with arc changes, Networks 4 (1974) 255-265.CrossrefGoogle Scholar

  • Powell, W. B., Jaillet, P. and Odoni, A., Stochastic and dynamic networks and routing, In: Network.Google Scholar

  • Routing, Vol. 8 (1995) of Handbooks in Operations Research and Management Science, Chapter 3 141-295.Google Scholar

  • Shahrokhi, F. And Matula, D. W. 1990. The maximum concurrent flow problem. J. ACM 37, 318-334.Google Scholar

  • Wikipedia, "Traffic Congestion", Available: http://en.wikipedia.org/wiki/Traffic_congestion

About the article

Published Online: 2012-08-13

Published in Print: 2012-05-01

Citation Information: , Volume 8, Issue 1, Pages 63–74, ISSN (Print) 1336-9180, DOI: https://doi.org/10.2478/v10294-012-0007-1.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in