Ahuja, R., Magnati, T., Orlin, J., *Network Flows.* Prentice-Hall, Englewood Cliffs, 1993.Google Scholar

Aronson, J., *A survey of dynamic network flows.* Ann. Oper. Res., vol. 20, 1989, pp. 1-66. 395 M. A. Fonoberova, D. D. Lozovanu.CrossrefGoogle Scholar

Aumann, Y. And Rabani, Y. 1998. An *O*(log *k*) approximate min-cut max-flow theorem and approximation algorithm. *SIAM J. Comput. 27*, 1, 291-301.Google Scholar

Aronson, J. E., A survey of dynamic network flows, *Annals of Operations Research* 20 (1989) 1-66.CrossrefGoogle Scholar

Ford, L., Fulkerson, D., *Flows in Networks.* Princeton University Press, Princeton, NJ, 1962.Google Scholar

Ben-Akiva, M., A. de Palma and I. Kaysi (1991). Dynamic network models and driver information systems. *Transportation Research A*, 25A(5), 251-266.Google Scholar

Dahlgren Lab of U. S. Navy, *Personal communications* 2001.Web of ScienceGoogle Scholar

Ford, L., Fulkerson, D., *Constructing maximal dynamic flows from static flows.* Operation Res., vol. 6, 1958, p. 419-433.Google Scholar

Fleisher, L., Skutella, M., *The quickest multi-commodity flow problem. Integer programming and combinatorial optimization*, Springer, Berlin, 2002, p. 36-53.Google Scholar

Fleischer, L., *Universally Maximum Flow with Piecewise-Constant Capacities. Networks*, vol. 38, no. 3, 2001, pp. 115-125.CrossrefGoogle Scholar

G. Bretti, R. Natalini, and B. Piccoli, "Numerical algorithms for simulations of a traffic model on road networks", *J. Comput. Appl. Math*., 2007, 210, (1-2), pp. 71-77.Web of ScienceGoogle Scholar

Goldberg, A., Tarjan, R., *A New Approach to the Maximum-Flow Problem.* Journal of the Association for Computing Machinery, vol. 35, no. 4, 1988, pp. 921-940.CrossrefGoogle Scholar

Garg, N., Vazarani, V., And Yannakakis, M. 1996. Approximate max-flow min-(multi) cut theorems and their applications. *SIAM J. Comput. 25*, 235-251.CrossrefGoogle Scholar

Hoppe, B. and Tardos, E., The quickest transsipment problem, *Mathematics of Operations Research* 25 (2000) 36-62.CrossrefGoogle Scholar

Hoppe, B., Tardos, E., *The quickest transshipment problem. Mathematics of Operations Research*, vol. 25, 2000, p. 36-62.CrossrefGoogle Scholar

Kohler, E. and Skutella, M., Flows over time with load-dependent transit times, *Proceedings of SODA'02* (2002) 174-183.Google Scholar

Kumar, S., Gupta, P., *An Incremental Algorithm for the Maximum Flow Problem.* Journal of Mathematical Modeling and Algorithms. vol. 2, 2003, pp. 1-16.Google Scholar

Leighton, F. T., Makedon, F., Plotkin, S., Stein, C., Tardos, E., And Tragoudas, S. 1992. Fast approximation algorithms for multi-commodity flow problems. *J. Comput. Syst. Sci. 50*, 228-243.Google Scholar

Lindsey, R. and E. T. Verhoef (2000). Congestion modeling. Forthcoming in: *Handbook of Transport Modeling, Vol. 1*. (D. A. Hensher and K. J. Button, eds.), Elsevier Science, Oxford.Google Scholar

Lozovanu, D., Stratila, D., *Optimal flow in dynamic networks with nonlinear cost functions on edges. Analysis and optimization of differential systems.* (Edited by V. Barbu, I. Lesiencko), ISBN 1-4020-7439-5. Klnwer Academic Publissers, 2003, p. 247-258.Google Scholar

Lozovanu, D., Stratila, D., *The minimum-cost flow problem on dynamic networks and algorithm for its solving.* Bul. Acad. Stiinte Repub. Mold., Mat., vol. 3, 2001, p. 38-56.Google Scholar

Laih, C-H. (1994). Queuing at a bottleneck with single- and multi-step tolls. *Transportation Research A*, 28A(3), 197-208.Google Scholar

Maria A. Fonoberova, Dmitrii D. Lozovanu, "The maximum flow in dynamic networks", *Computer Science Journal of Moldova*, vol.12, no.3 (36), 2004.Google Scholar

Mazzoni, G., Pallottino, S., Scutella, M., *The maximum flow problem: A maxpreflow approach.* European Journal of Operational Research, vol. 53, 1991, pp. 257-278.CrossrefWeb of ScienceGoogle Scholar

Minieka, E., Dynamic network flows with arc changes, *Networks* 4 (1974) 255-265.CrossrefGoogle Scholar

Powell, W. B., Jaillet, P. and Odoni, A., Stochastic and dynamic networks and routing, In: *Network.*Google Scholar

Routing, Vol. 8 (1995) of *Handbooks in Operations Research and Management Science*, Chapter 3 141-295.Google Scholar

Shahrokhi, F. And Matula, D. W. 1990. The maximum concurrent flow problem. *J. ACM 37*, 318-334.Google Scholar

Wikipedia, "Traffic Congestion", Available: http://en.wikipedia.org/wiki/Traffic_congestion

## Comments (0)