Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Mathematics, Statistics and Informatics

The Journal of University of Saint Cyril and Metodius

Editor-in-Chief: Kvasnicka, Vladimír

2 Issues per year

Mathematical Citation Quotient (MCQ) 2016: 0.02

Open Access
See all formats and pricing
More options …

Skeleton-based 3D Surface Parameterization Applied on Texture Mapping

Martin Madaras / Roman Ďurikovič
Published Online: 2013-04-13 | DOI: https://doi.org/10.2478/v10294-012-0010-6


Assume a 2D manifold surface topologically equivalent to a sphere with handles we propose a novel 3D surface parametrization along the surface skeleton. First, we use a global mapping of the surface vertices onto a computed skeleton. Second, we use local mapping of the surrounding area of each skeleton segment into a small rectangle whose size is derived based on the surface properties around the segment. Each rectangle can be textured by assigning the local u;v texture coordinates. Furthermore, these rectangles are packed into a large squared texture called skeleton texture map (STM) by approximately solving a palette loading problem. Our technique enables the mapping of a texture onto the surface without necessity to store texture coordinates together with the model data. In other words it is enough to store the geometry data with STM and the coordinates are calculated on the fly.

Additional Keywords and Phrases : skeleton; texture; mapping; parameterizations

  • AU, O. K.-C., TAI, C.-L., CHU, H.-K., COHEN-OR, D., AND LEE, T.-Y. 2008. Skeleton extraction by mesh contraction. In ACM SIGGRAPH 2008 papers. 1-10.Web of ScienceGoogle Scholar

  • AUJAY, G., H´ETROY, F., LAZARUS, F., AND DEPRAZ, C. 2007. Harmonic skeleton for realistic character animation. In Proceedings of the 2007 ACM SIGGRAPH. 151-160.Google Scholar

  • BEN-CHEN, M., GOTSMAN, C., AND BUNIN, G. 2008. Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum 27, 2, 449-458.Web of ScienceGoogle Scholar

  • BENSON, D. AND DAVIS, J. 2002. Octree textures. ACM Trans. Graph. 21, 785-790.Google Scholar

  • BIER, E. AND SLOAN, K. 1986. Two-part texture mappings. IEEE Computer Graphics and Applications 6, 40-53.CrossrefGoogle Scholar

  • BIRGIN, E. G., LOBATO, R. D., AND MORABITO, R. 2010. Generating unconstrained two-dimensional nonguillotine cutting patterns by a recursive partitioning algorithm.Web of ScienceGoogle Scholar

  • CAO, J., TAGLIASACCHI, A., OLSON, M., ZHANG, H., AND SU, Z. 2010. Point cloud skeletons via laplacian based contraction. In Proceedings of the 2010 SMI Conf. 187-197.Google Scholar

  • CARR, N. A. AND HART, J. C. 2002. Meshed atlases for real-time procedural solid texturing. ACM Transactions on Graphics 21, 106-131.CrossrefGoogle Scholar

  • CORNEA, N. D., SILVER, D., AND MIN, P. 2007. Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics 13, 3, 530-548.CrossrefWeb of ScienceGoogle Scholar

  • DEBRY, D., GIBBS, J., DELEON, D., AND ROBINS, P. N. 2002. Painting and rendering textures on unparameterized models.Google Scholar

  • DEY, T. K. AND SUN, J. 2006. Defining and computing curve-skeletons with medial geodesic function. In Proceedings of the 4th EG symposium on Geom. processing. 143-152.Google Scholar

  • FLOATER, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 2003.Web of ScienceCrossrefGoogle Scholar

  • GARLAND, M. AND HECKBERT, P. S. 1997. Surface simplification using quadric error metrics. In SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 209-216.Google Scholar

  • GU, X. AND YAU, S.-T. 2003. Global conformal surface parameterization. In Proceedings of the 2003 Eurographics/ ACM SIGGRAPH symposium on Geometry processing. SGP ’03. Eurographics Association, Aire-la- Ville, Switzerland, Switzerland, 127-137.Google Scholar

  • HAKER, S., ANGENENT, S., TANNENBAUM, A., KIKINIS, R., SAPIRO, G., AND HALLE, M. 2000. Conformal surface parameterization for texture mapping. IEEE Transactions on Visualization and Computer Graphics 6, 181-189.CrossrefGoogle Scholar

  • HE, Y., WANG, H., FU, C.-W., AND QIN, H. 2009. A divide-and-conquer approach for automatic polycube map construction. Computers & Graphics, 369-380.Web of ScienceGoogle Scholar

  • HILAGA, M., SHINAGAWA, Y., KOHMURA, T., AND KUNII, T. L. 2001. Topology matching for fully automatic similarity estimation of 3d shapes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. SIGGRAPH ’01. ACM, New York, NY, USA, 203-212.Google Scholar

  • HORMANN, K. AND GREINER, G. 2000. MIPS: An Efficient Global Parametrization Method. Vanderbilt University Press.Google Scholar

  • JIN, M., KIM, J., LUO, F., AND GU, X. 2008. Discrete surface ricci flow. IEEE Transactions on Visualization and Computer Graphics 14, 1030-1043.CrossrefWeb of ScienceGoogle Scholar

  • KHAREVYCH, L., SPRINGBORN, B., AND SCHR¨O DER, P. 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25, 412-438.Google Scholar

  • LEE, A. W. F., SWELDENS, W., SCHR¨ODER, P., COWSAR, L., AND DOBKIN, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques. SIGGRAPH ’98. ACM, New York, NY, USA, 95-104.Google Scholar

  • LEFEBVRE, S. AND DACHSBACHER, C. 2007. Tiletrees. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games.Google Scholar

  • LÉVY, B. AND MALLET, J.-L. 1998. Non-distorted texture mapping for sheared triangulated meshes. In Proceedings of the 25th annual conf. on CG and interactive techniques. 343-352.Google Scholar

  • LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 362-371.Google Scholar

  • LIN, J., JIN, X., FAN, Z., AND WANG, C. C. L. 2008. Automatic polycube-maps. In Proceedings of the 5th international conference on Advances in geometric modeling and processing. GMP’08. Springer-Verlag, Berlin, Heidelberg, 3-16.Google Scholar

  • LIU, P.-C., WU, F.-C., MA, W.-C., LIANG, R.-H., AND OUHYOUNG, M. 2003. Automatic animation skeleton construction using repulsive force field. In Proceedings of the 11th Pacific Conference on CG and Applications. 409-413.Google Scholar

  • MAILLOT, J., YAHIA, H., AND VERROUST, A. 1993. Interactive texture mapping. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques. 27-34.Google Scholar

  • PATANE, G., SPAGNUOLO, M., AND FALCIDIENO, B. 2004. Para-graph: Graph-based parameterization of triangle meshes with arbitrary genus. Comput. Graph. Forum, 783-797.Google Scholar

  • PIPONI, D. AND BORSHUKOV, G. 2000. Seamless texture mapping of subdivision surfaces by model pelting and texture blending. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. SIGGRAPH ’00. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 471-478.Google Scholar

  • PRAUN, E. AND HOPPE, H. 2003. Spherical parametrization and remeshing. ACM Trans. Graph. 22, 340-349.Google Scholar

  • PURNOMO, B., COHEN, J. D., AND KUMAR, S. 2004. Seamless texture atlases. In ACM SIGGRAPH symposium on Geometry processing. 65-74.Google Scholar

  • RAY, N., LI, W. C., L´EVY, B., SHEFFER, A., AND ALLIEZ, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 1460-1485.Google Scholar

  • SANDER, P. V., GORTLER, S. J., SNYDER, J., AND HOPPE, H. 2002. Signal-specialized parametrization. In Proceedings of the 13th Eurographics workshop on Rendering. EGRW ’02. Eurographics Association, Airela- Ville, Switzerland, Switzerland, 87-98.Google Scholar

  • SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H. 2001. Texture mapping progressive meshes. In Proceedings of the 28th annual conf. on CG and inter. techn. 409-416.Google Scholar

  • SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 249-259.Web of ScienceGoogle Scholar

  • SHARF, A., LEWINER, T., SHAMIR, A., AND KOBBELT, L. 2007. On-the-fly curve-skeleton computation for 3D shapes. Computer Graphics Forum, (Proceedings Eurographics 2007) 26, 3, 323-328.Web of ScienceCrossrefGoogle Scholar

  • SHEFFER, A. AND HART, J. C. 2002. Seamster: Inconspicuous low-distortion texture seam layout. In IEEE Visualization. 291-298.Google Scholar

  • SHEFFER, A. AND STURLER, E. D. 2000. Surface parameterization for meshing by triangulation flattening. In Proc. 9th International Meshing Roundtable. 161-172.Google Scholar

  • TARINI, M., HORMANN, K., CIGNONI, P., AND MONTANI, C. 2004. Polycube-maps. In In Proceedings of SIGGRAPH 2004. 853-860.Google Scholar

  • TEICHMANN, M. AND TELLER, S. 1998. Assisted articulation of closed polygonal models. In SIGGRAPH ’98: ACM SIGGRAPH 98 Conference abstracts and applications. ACM, New York, NY, USA, 254.Google Scholar

  • WANG, H., HE, Y., LI, X., GU, X., AND QIN, H. 2007. Polycube splines. In Proceedings of the 2007 ACM symposium on Solid and physical modeling. SPM ’07. ACM, New York, NY, USA, 241-251.Google Scholar

  • YUKSEL, C., KEYSER, J., AND HOUSE, D. H. 2010. Mesh colors. ACM Trans. Graph. 29, 15:1-15:11.Google Scholar

  • ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2005. Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24, 1-27.Google Scholar

About the article

Published Online: 2013-04-13

Published in Print: 2012-12-01

Citation Information: Journal of Applied Mathematics, Statistics and Informatics, Volume 8, Issue 2, Pages 5–19, ISSN (Print) 1336-9180, DOI: https://doi.org/10.2478/v10294-012-0010-6.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in