Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Mathematics, Statistics and Informatics

The Journal of University of Saint Cyril and Metodius

Editor-in-Chief: Kvasnicka, Vladimír

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.02

Open Access
Online
ISSN
1339-0015
See all formats and pricing
More options …

Applications of Some Hypergeometric Summation Theorems Involving Double Series

H. M. Srivastava
  • Corresponding author
  • Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. I. Qureshi
  • Corresponding author
  • Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kaleem A. Quraishi
  • Corresponding author
  • Section of Mathematics, Mewat Engineering College (Wakf), Palla, Nuh, Mewat 122107, Haryana, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rahul Singh
  • Corresponding author
  • Greater Noida Institute of Technology, Greater Noida, Gautambuddha Nagar 201306, Uttar Pradesh, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-13 | DOI: https://doi.org/10.2478/v10294-012-0013-3

Abstract

The main object of this paper is to derive a number of general double series identities and to apply each of these identities in order to deduce several hypergeometric reduction formulas for the Srivastava-Daoust double hypergeometric function. The results presented in this paper are based essentially upon some

Additional Key Words and Phrases: Series identities; Hypergeometric summation theorems; Series rearrangement techniques; Pochhammer's symbol; Gamma function; Hypergeometric reduction formulas; Srivastava-Daoust double and multiple hypergeometric functions; Gauss-Legendre multiplication formula

  • [1] P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques; Polyn^omes d'Hermite, Gauthier-Villars, Paris, 1926.Google Scholar

  • [2] R. G. Buschman and H. M. Srivastava, Series identities and reducibility of Kampé de Fériet functions, Math. Proc. Cambridge Philos. Soc. 91 (1982), 435-440.Google Scholar

  • [3] K.-Y. Chen and H. M. Srivastava, Series identities and associated families of generating functions, J. Math. Anal. Appl. 311 (2005), 582-599.Google Scholar

  • [4] K.-Y. Chen, S.-J. Liu and H. M. Srivastava, Some double-series identities and associated generating-function relationships, Appl. Math. Lett. 19 (2006), 887-893.Google Scholar

  • [5] H. Exton, Multiple Hypergeometric Functions and Applications, Halsted Press (Ellis Hor- wood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1976.Google Scholar

  • [6] N. T. H ; ai, H. M. Srivastava and O. I. Marichev, A note on the convergence of certain families of multiple hypergeometric series, J. Math. Anal. Appl. 164 (1992), 104-115.Google Scholar

  • [7] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. 3: More Special Functions, Nauka, Moscow, 1986 (In Russian); Translated from the Russian by G. G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo and Melbourne, 1990.Google Scholar

  • [8] M. I. Qureshi, K. A. Quraishi and H. M. Srivastava, Some hypergeometric summation formulas and series identities associated with exponential and trigonometric functions, Integral Transforms Spec. Funct. 19 (2008), 267-276.Web of ScienceGoogle Scholar

  • [9] E. D. Rainville, Special Functions, Macmillan Company, New York, 1960: Reprinted by Chelsea Publication Company, Bronx, New York, 1971.Google Scholar

  • [10] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cam- bridge, London and New York, 1966.Google Scholar

  • [11] H. M. Srivastava and M. C. Daoust, On Eulerian integrals associated with Kampé de Fériet's function, Publ. Inst. Math. (Beograd) (N. S.) 9 (23) (1969), 199-202.Google Scholar

  • [12] H. M. Srivastava and M. C. Daoust, Certain generalized Neumann expansions associated with the Kampé de Fériet function, Nedrel. Akad. Wetensch. Proc. Ser. A 72 = Indag.Math. 31 (1969), 449-457.Google Scholar

  • [13] H. M. Srivastava and M. C. Daoust, A note on the convergence of Kampé de Fériet's double hypergeometric series, Math. Nachr. 53 (1972), 151-157.Google Scholar

  • [14] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Bris- bane and Toronto, 1985.Google Scholar

  • [15] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.Google Scholar

About the article

Published Online: 2013-04-13

Published in Print: 2012-12-01


Citation Information: Journal of Applied Mathematics, Statistics and Informatics, ISSN (Print) 1336-9180, DOI: https://doi.org/10.2478/v10294-012-0013-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
H.M. SRIVASTAVA, M.I. QURESHI, Kaleem A. QURAISHI, and Ashish ARORA
Acta Mathematica Scientia, 2014, Volume 34, Number 3, Page 619

Comments (0)

Please log in or register to comment.
Log in