Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Mathematics, Statistics and Informatics

The Journal of University of Saint Cyril and Metodius

Editor-in-Chief: Kvasnicka, Vladimír

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.02

Open Access
Online
ISSN
1339-0015
See all formats and pricing
More options …

An Efficient Legendre Pseudospectral Method for Solving Nonlinear Quasi Bang-Bang Optimal Control Problems

Emran Tohidi / Somayyeh Lotfi Noghabi
  • Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-13 | DOI: https://doi.org/10.2478/v10294-012-0016-0

Abstract

In this paper, an efficient Legendre pseudospectral approach for the accurate solution of nonlinear quasi bang-bang optimal control problems (OCPs) is investigated. In this approach, after linearizing the dynamical system, control and state functions are considered as piecewise constant and piecewise continuous polynomials, respectively, and the switching points are also taken as decision variables. Furthermore, for simplicity in discretization, a integral formulation of the dynamical equations is considered. Thereby, the problem is converted into a mathematical programming problem which can be solved by well-developed parameter optimization algorithms. Through a numerical implementation we show the efficiency of the proposed method via comparing with a classical pseudospectral method and other discretization approaches.

Additional Key Words and Phrases: Quasi Bang-Bang optimal control; Switching point; Numerical methods; Pseudospectral Legendre method

  • [1] K. P. Badakhshan and A. V. Kamyad, Numerical Solution of Nonlinear Optimal Control Problems Using Non-linear Programming, Appl. Math. Comput, 187 (2007), 1511-1519.Google Scholar

  • [2] R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.Google Scholar

  • [3] J. T. Betts, Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21 (1998) 193-207.Google Scholar

  • [4] J. T. Betts, Practical methods for optimal control using nonlinear programming, Advances in Design and Control 3, SIAM, Philadelphia, PA, 2001.Google Scholar

  • [5] A. E. Bryson, and Y. C. Ho, Applied optimal Control, Hemisphere, New York, 1975.Google Scholar

  • [6] C. Canuto, M. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer: Berlin, 1991.Google Scholar

  • [7] M. Dehghan, M. Shamsi, Numerical solution of two-dimensional parabolic equation subject to nonstandard boundary specifications using the pseudospectral Legendre method. Numerical Methods for Partial Differential Equations, 22(2006), 1255-266.Google Scholar

  • [8] G. Elnagar, M. A. Kazemi, M. Razzaghi, The pseudospectral Legendre method for discretiz- ing optimal control problems. IEEE Transactions on Automatic Control, 40 (1995), 1793-1796.Google Scholar

  • [9] F. Fahroo, I. M. Ross, Direct trajectory optimization by a Chebyshev pseudospectral method, J. Guidance. Control. Dynamics, 25(2002) 160-166.Google Scholar

  • [10] R. Fletcher, Practical Methods of Optimization, Wiley, Chichester, 1987.Google Scholar

  • [11] B. Fornberg, A Practical Guide to Pseudospectral Methods. Cambridge University Press: Cambridge, 1998.Google Scholar

  • [12] W. Kang, Q. Gong, I. M. Ross, Convergence of pseudospectral methods for nonlinear optimal control problems with discontinuous controller, 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC'05), Sevil, Spain, 2005, 2799-2804.Google Scholar

  • [13] H. Ma, T. Qin, and W. zhang, An efficient Chebyshev algorithm for the solution of optimal control problems, IEEE trans. Autom. Control, 56 (2011) 675-680.Web of ScienceGoogle Scholar

  • [14] J. Nocedal, S. J. Wright, Numerical Optimization, Springer Series in Operations Research. Springer, New York, NY, 1999.Google Scholar

  • [15] M. H. Noori Skandari, E. Tohidi, Numerical solution of a class of nonlinear optimal control problems using linearization and discretization, Applied Mathematics, 2 (2011), 271-277.Google Scholar

  • [16] M, Razzaghi, G. Elnagar, Numerical solution of the controlled Duffing oscillator by the pseudospectral method, J. Comput. Appl. Math, 56 (1994) 253-261.CrossrefGoogle Scholar

  • [17] M, Razzaghi, S. Yousefi, Legendre wavelets method for constrained optimal control prob- lems, Math. Meth. Appl. Sci, 25 (2002), 529-539.CrossrefGoogle Scholar

  • [18] I. M. Ross, J. Rea, F. Fahroo, Exploiting higher-order derivatives in computational optimal control. Proceedings of the 2002 IEEE Mediterranean Conference, Lisbon, Portugal, July 2002.Google Scholar

  • [19] M. Shamsi, M. Dehghan, Recovering a time-dependent coefficient in a parabolic equa- tion from overspeciffied boundary data using the pseudospectral Legendre method, Numerical Methods for Partial Differential Equations, 23 (2007), 196-210.Google Scholar

  • [20] M. Shamsi, A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems, Optimal, Control, Appl, Methods, DOI: 10.1002/oca.967.Web of ScienceCrossrefGoogle Scholar

  • [21] O. V. Stryk, Numerical Solution of Optimal Control Problems by Direct Collocation, In: R. Bulrisch, A. Miele, J. Stoer and K. H. Well, Eds., Optional Control of Variations, Opti- mal Control Theory and Numerical Methods, International Series of Numerical Mathematics, Birkhuser Verlag, Basel, 1993, 129-143.Google Scholar

  • [22] E. Tohidi, O. R. N. Samadi, M. H. Farahi, Legendre approximation for solving a class of nonlinear optimal control problems, Journal of Mathematical Finance, 1 (2011), 8-13.Google Scholar

  • [23] E. Tohidi, M. H. Noori Skandari, A New Approach for a Class of Nonlinear Optimal Control Problems Using Linear Combination Property of Intervals, Journal of Computations and Modelling, 1 (2011), 145-156.Google Scholar

  • [24] E. Tohidi, O. R. N. Samadi, Optimal control of nonlinear Volterra integral equations via Legendre Polynomials, IMA Journal of Mathematical Control and Information, DOI: 10.1093/imamci/DNS014.CrossrefGoogle Scholar

  • [25] L. N. Trefethen, Spectral methods in Matlab. Software-Environments-Tools 10. IAM, So- ciety for Industrial and Applied Mathematics: Philadelphia, PA, 2000.Google Scholar

  • [26] V. Yen, M. Nagurka, Linear quadratic optimal control via Fourier-based state parameteri- zation. Journal of Dynamic Systems, Measurement and Control, 113 (1991), 206-215.Google Scholar

About the article

Published Online: 2013-04-13

Published in Print: 2012-12-01


Citation Information: Journal of Applied Mathematics, Statistics and Informatics, ISSN (Print) 1336-9180, DOI: https://doi.org/10.2478/v10294-012-0016-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fayyaz Ahmad, Shafiq Ur Rehman, Malik Zaka Ullah, Hani Moaiteq Aljahdali, Shahid Ahmad, Ali Saleh Alshomrani, Juan A. Carrasco, Shamshad Ahmad, and Sivanandam Sivasankaran
Complexity, 2017, Volume 2017, Page 1
[2]
K. Mamehrashi and S.A. Yousefi
International Journal of Control, 2017, Volume 90, Number 2, Page 298
[3]
Sabahat Qasim, Zulifqar Ali, Fayyaz Ahmad, S. Serra-Capizzano, Malik Zaka Ullah, and Arshad Mahmood
Computers & Mathematics with Applications, 2016, Volume 71, Number 7, Page 1464
[4]
Uswah Qasim, Zulifqar Ali, Fayyaz Ahmad, Stefano Serra-Capizzano, Malik Zaka Ullah, and Mir Asma
Algorithms, 2016, Volume 9, Number 1, Page 18

Comments (0)

Please log in or register to comment.
Log in