Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Mathematics, Statistics and Informatics

The Journal of University of Saint Cyril and Metodius

Editor-in-Chief: Kvasnicka, Vladimír

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.02

Open Access
Online
ISSN
1339-0015
See all formats and pricing
More options …

Animating multiple interacting miscible and immiscible fluids based on particle simulation

Juraj Onderik
  • Corresponding author
  • Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovak Republic http://www.fmph.uniba.sk
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Chládek
  • Corresponding author
  • Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovak Republic http://www.fmph.uniba.sk
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roman Ďurikovič
  • Corresponding author
  • Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovak Republic; http://www.sccg.sk/~durikovic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-07 | DOI: https://doi.org/10.2478/jamsi-2013-0014

Abstract

We present a particle-based approach for animating multiple interacting liquids that can handle number of immiscible fluids as well as number of miscible fluids in our simulation framework. We solve the usual problem of robust interface tracking, between immiscible fluids, by reconstructing the zero level set of our novel composite implicit function, see Fig. 1 left and center. It’s recurrent formulation handles directly interfaces between any number of liquids including the free surfaces. We model the miscible fluids by tracking concentrations of dissolved materials in the vicinity of each particle. Flick’s law is applied for the Laplacian-based diffusion of concentrations, see Fig. 1 right. Particle sedimentation is achieved by directional advection along the settling velocity. The diffusion-advection equation is discretized by particles using the Lagrangian formulation. The proposed improvements can be easily implemented into the common Smoothed Particle Hydrodynamics (SPH) simulations framework

Keywords: Multi-fluid flow; Miscible fluid; Immiscible fluid; SPH particlebased simulation

References

  • BAO, K., WU, X., ZHANG, H., AND WU, E. 2010. Volume fraction based miscible and immiscible fluid animation. Comput. Animat. Virtual Worlds 21, 401-410.Web of ScienceGoogle Scholar

  • BATCHELOR, G. 1967. An introduction to fluid mechanics.Google Scholar

  • CARLSON, M.,MUCHA, P. J., VAN HORN, III, R. B., AND TURK, G. 2002. Melting and flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. SCA ’02. ACM, New York, NY, USA, 167-174.Google Scholar

  • FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simulation of smoke. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, New York, NY, USA, 15-22.Google Scholar

  • HARRIS, M. J., BAXTER, W. V., SCHEUERMANN, T., AND LASTRA, A. 2003. Simulation of cloud dynamics on graphics hardware. In HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 92-101.Google Scholar

  • KANG, N., PARK, J., NOH, J., AND SHIN, S. Y. 2010. A hybrid approach to multiple fluid simulation using volume fractions. Computer Graphics Forum 29, 2, 685-694.CrossrefWeb of ScienceGoogle Scholar

  • KEISER, R., ADAMS, B., GASSER, D., BAZZI, P., DUTRE, P., AND GROSS, M. 2005. A unified lagrangian approach to solid-fluid animation. In Symposium on Point-Based Graphics, M. Gross, H. Pfister, M. Alexa, and S. Rusinkiewicz, Eds. Eurographics Association, Zurich, Switzerland, 125-133.Google Scholar

  • KIM, B. 2010. Multi-phase fluid simulations using regional level sets. ACM Trans. Graph. 29, 175:1-175:8.Google Scholar

  • KRIŠTOF, P., BENEŠ, B., KŘIVÁNEK, J., ANDŠŤ AVA, O. 2009. Hydraulic erosion using smoothed particle hydrodynamics. Computer Graphics Forum (Proceedings of Eurographics 2009) 28, 2.Web of ScienceCrossrefGoogle Scholar

  • LENAERTS, T., ADAMS, B., AND DUTR’E, P. 2008. Porous flow in particle-based fluid simulations. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers. ACM, New York, NY, USA, 1-8.Google Scholar

  • LOSASSO, F., IRVING, G., AND GUENDELMAN, E. 2006. Melting and burning solids into liquids and gases. IEEE Transactions on Visualization and Computer Graphics 12, 3, 343-352. Member-Ron Fedkiw.CrossrefGoogle Scholar

  • LOSASSO, F., SHINAR, T., SELLE, A., AND FEDKIW, R. 2006. Multiple interacting liquids. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers. ACM Press, New York, NY, USA, 812-819.Google Scholar

  • MONAGHAN, J. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 1703-1759.Google Scholar

  • MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-based fluid simulation for interactive applications. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 154-159.Google Scholar

  • MÜLLER, M., SOLENTHALER, B., KEISER, R., AND GROSS, M. 2005. Particle-based fluid-fluid interaction. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM Press, New York, NY, USA, 237-244.Google Scholar

  • ONDERIK, J., CHL ’ADEK, M., AND ˇDURIKOVIˇC, R. 2011. Sph with small scale details and improved surface reconstruction. In SCCG ’11: Proceedings of the Spring Conference on Computer graphics. ACM Press, Viniˇcn’e, Slovakia.Google Scholar

  • PARK, J.,KIM, Y.,WI, D.,KANG, N., SHIN, S. Y., AND YONG NOH, J. 2008. A unified handling of immiscible and miscible fluids. Journal of Visualization and Computer Animation 19, 455-467.Web of ScienceGoogle Scholar

  • RASMUSSEN, N., NGUYEN, D. Q., GEIGER, W., AND FEDKIW, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. 22, 3, 703-707.Google Scholar

  • RUNGJIRATANANON, W., SZEGO, Z., KANAMORI, Y., AND NISHITA, T. 2008. Real-time animation of sandwater interaction. In PG ’08: Proceedings od the Pacific Graphics 2008.Google Scholar

  • SHINY, S.-H., KAMZ, H. R., AND KIMX, C.-H. 2010. Hybrid simulation of miscible mixing with viscous fingering. Computer Graphics Forum 29, 2, 675-683.Web of ScienceCrossrefGoogle Scholar

  • SOLENTHALER, B., SCHL ‥AFLI, J., AND PAJAROLA, R. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 69-82.Web of ScienceCrossrefGoogle Scholar

  • STAM, J. 1999. Stable fluids. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 121-128.Google Scholar

  • WOJTAN, C., CARLSON, M., MUCHA, P. J., AND TURK, G. 2007. Animating corrosion and erosion. In Eurographics Workshop on Natural Phenomena.Google Scholar

  • YU, J. AND TURK, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’10. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 217-225.Google Scholar

  • ZHU, Y. AND BRIDSON, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 965-972. Google Scholar

About the article

Published Online: 2014-03-07

Published in Print: 2013-12-01


Citation Information: Journal of Applied Mathematics, Statistics and Informatics, ISSN (Print) 1336-9180, DOI: https://doi.org/10.2478/jamsi-2013-0014.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in