Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Mathematics, Statistics and Informatics

The Journal of University of Saint Cyril and Metodius

Editor-in-Chief: Kvasnicka, Vladimír

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.02

Open Access
Online
ISSN
1339-0015
See all formats and pricing
More options …

Some Srivastava-Brafman Type Generating Relations For A General Class Of Multi-Index And Multi-Variable Gould-Hopper And Dattoli Type Hypergeometric Polynomials

M. I. Qureshi
  • Corresponding author
  • Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi-110025 (India)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kaleem A. Quraishi
  • Corresponding author
  • Mathematics Section, Mewat Engineering College (Waqf), Palla, Nuh, Mewat-122107, Haryana (India)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ram Pal
  • Corresponding author
  • Department of Applied Sciences and Humanities, Aryabhat Polytechnic, G. T. Karnal Road, Delhi-110033 (India)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-15 | DOI: https://doi.org/10.2478/jamsi-2014-0003

Abstract

In this article, we first introduce and study a new family of the multi-index and multi-variable Gould-Hopper and Dattoli type polynomials {Hn(cm, cm-1,…, c3, c2)(a1, a2, …, am} defined by (2.1), which are an extension of different types of Her-mite polynomials defined in section 1. We next consider multi-variable linear, bilinear and bilateral generating relations of the newly defined hypergeometric polynomials, using series iteration techniques. Further, we generalize these generating relations in the forms of multiple series identities involving bounded multiple sequences, Fox-Wright hypergeometric function and Srivastava-Daoust multi-variable hypergeometric function.

Keywords: Generalized hypergeometric functions; Srivastava-Daoust multi-variable hypergeometric functions; Gould-Hopper polynomials; Classical Hermite polynomials; Extended family of the generalized Hermite polynomials; Generating functions; Multi-index and Multi-variable Dattoli type polynomials; Generating relations of Brafman, Mehler, Srivastava-Lavoie, Dattoli-Torre-Lorenzutta

MSC: 33C45; 33C47; 33C50; 33C20; 33C70; 33C80; 42C05

References

  • 1. Ahmad, Nadeem; The Study of Certain Multivariable Gaussian Hypergeometric Series, Ph.D. Thesis, Jamia Millia Islamia(A Central University), New Delhi, India, 2006.Google Scholar

  • 2. Andhare, P. G. and Chaudhary, M. S.; Generating Function Involving Generalized Hermite Polynomials, Bull. Marathwada Math. Soc., 4 (2003), 1-3.Google Scholar

  • 3. Bell, W. W.; Special Functions for Scientists and Engineers, D. Van Nostrand Company Ltd., London, 1968.Google Scholar

  • 4. Bhadana, K. G.; A Study of Hypergeometric Function, I-Function of N-Variable with Applications, Ph.D. Thesis, University of Kota, Kota, Rajasthan, India, 2007.Google Scholar

  • 5. Brafman, F.; Generating Functions of Jacobi and Related Polynomials, Proc. Amer. Math. Soc., 2 (1951), 942-949.CrossrefGoogle Scholar

  • 6. Carlitz, L. and Srivastava, H. M.; Some New Generating Functions for the Hermite Polynomials, J. Math. Anal. Appl., 149 (2) (1990), 513-520.Google Scholar

  • 7. Dattoli, G.; Differential Identities, Generalized Polynomials and Applications in Physics and Mathematics, Centre de Recherches Mathematiques CRM, Proceedings and Lecture Notes, 25 (2000).Google Scholar

  • 8. Dattoli, G., Chiccoli, C., Lorenzutta, S., Maino, G. and Torre, A.; Generalized Bessel Functions and Generalized Hermite Polynomials, J. Math. Anal. Appl., 178 (1993), 509-516.Google Scholar

  • 9. Dattoli, G., Lorenzutta, S. and Sacchetti, D.; A Note on Operational Rules for Hermite and Laguerre Polynomials, Operational Rules and Special Polynomials, Internat. J. Math. Stat. Sci., 9 (2) (2000) 227-238.Google Scholar

  • 10. Dattoli, G., Srivastava, H. M. and Khan, S.; Operational Versus Lie-algebraic Methods and the Theory of Multi-variable Hermite polynomials, Integral Transforms Spec. Funct., 16 (1) (2005), 81-91.Google Scholar

  • 11. Dattoli, G., Srivastava, H. M. and Sacchetti, D.; The Hermite Polynomials and the Bessel Functions from a General Point of View, Internat. J. Math. and Math. Sci., 57 (2003), 3633-3642.Google Scholar

  • 12. Dattoli, G., Srivastava, H. M. and Zhukovsky, K; Orthogonality Properties of the Hermite and Related Polynomials, J. Comput. Appl. Math., 182 (1) (2005), 165-172.Google Scholar

  • 13. Dattoli, G., Srivastava, H. M. and Zhukovsky, K; Operational Methods and Differential Equations with Applications to initial-Value Problems, Appl. Math. Comput., 184 (2) (2007), 979-1001.Google Scholar

  • 14. Dattoli, G., Torre, A. and Lorenzutta, S.; Operational Identities and Properties of Ordinary and Generalized Special Functions, J. Math. Anal. Appl., 236 (1999), 399-414.Google Scholar

  • 15. Djordjević, G. B. and Srivastava, H. M.; Some Generating Functions and Other Properties Associated with the Generalized Hermite and Related Polynomials, Integral Transforms Spec. Funct., 22 (12) (2011), 895-906.Web of ScienceGoogle Scholar

  • 16. Gould, H. W. and Hopper, A. T.; Operational Formulas Connected with Two Generalizations of Hermite Polynomials, Duke Math. J., 29 (1962), 51-63.Google Scholar

  • 17. McBride, E. B.; Obtaining Generating Functions, (Springer Tracts in Natural Philosophy) Springer-Verlag, New York, Heidelberg, Berlin, 1971.Google Scholar

  • 18. Rainville, E. D.; Special Functions, The Macmillan Co. Inc., New York, 1960; Reprinted by Chelsea Publ. Co. Bronx, New York, 1971.Google Scholar

  • 19. Srivastava, H. M.; Certain Double Integrals Involving Hypergeometric Functions, Jhanahha Sect. A, 1 (1971), 1-10.Google Scholar

  • 20. Srivastava, H. M.; On q-Generating Functions and Certain Formulas of David Zeitlin, Illinois J. Math., 15 (1971), 64-72.Google Scholar

  • 21. Srivastava, H. M.; A Note on a Generating Function for the Generalized Hermite Polynomials, Nederl. Akad. Wetensch. Proc. Ser. A, 79 = Indag. Math., 38 (1976), 457-461.Google Scholar

  • 22. Srivastava, H. M.; Some Bilateral Generating Functions for a Certain Class of Special Functions. I and II, Nederl. Akad. Wetensch. Proc. Ser. A 83 = Indag. Math., 42 (1980), 221-233 and 234-246.Google Scholar

  • 23. Srivastava, H. M. and Karlsson, P. W.; Multiple Gaussian Hypergeometric Series, Hal-sted Press (Ellis Horwood Limited, Chichester, U.K.) John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.Google Scholar

  • 24. Srivastava, H. M. and Lavoie, J.-L.; A Certain Method of Obtaining Bilateral Generating Functions, Nederl. Akad. Wetensch. Proc. Ser. A 78=Indag Math., 37 (1975), 304-320.Google Scholar

  • 25. Srivastava, H. M. and Manocha, H. L.; A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester, U.K.) John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.Google Scholar

About the article

Published Online: 2014-07-15


Citation Information: Journal of Applied Mathematics, Statistics and Informatics, ISSN (Online) 1336-9180, DOI: https://doi.org/10.2478/jamsi-2014-0003.

Export Citation

© 2014 Faculty of Natural Sciences, University of Saint Cyril and Metodius. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in