Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Mathematics, Statistics and Informatics

The Journal of University of Saint Cyril and Metodius

Editor-in-Chief: Kvasnicka, Vladimír

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.02

Open Access
Online
ISSN
1339-0015
See all formats and pricing
More options …

A Class of Modified Ratio Estimators for Estimation of Population Variance

J. Subramani
  • Corresponding author
  • Department of Statistics Ramanujan School of Mathematical Sciences, Pondicherry University R V Nagar, Kalapet, Puducherry – 605014, India.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Kumarapandiyan
  • Department of Statistics Ramanujan School of Mathematical Sciences, Pondicherry University R V Nagar, Kalapet, Puducherry – 605014, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-27 | DOI: https://doi.org/10.1515/jamsi-2015-0006

Abstract

In this paper we have proposed a class of modified ratio type variance estimators for estimation of population variance of the study variable using the known parameters of the auxiliary variable. The bias and mean squared error of the proposed estimators are obtained and also derived the conditions for which the proposed estimators perform better than the traditional ratio type variance estimator and existing modified ratio type variance estimators. Further we have compared the proposed estimators with that of the traditional ratio type variance estimator and existing modified ratio type variance estimators for certain natural populations.

Keywords: Coefficient of variation; Kurtosis; Median; Natural populations; Simple random sampling; Skewness

References

  • [1] AGARWAL, M.C. and SITHAPIT, A.B. 1995. Unbiased ratio type estimation. Statistics and Probability Letters, 25: 361-364CrossrefGoogle Scholar

  • [2] AHMED, M.S., RAMAN, M.S. and HOSSAIN, M.I. 2000. Some competitive estimators of finite population variance multivariate auxiliary information. Information and Management Sciences, 11 (1): 49-54Google Scholar

  • [3] AL-JARARHA, J. and AL-HAJ EBRAHEM, M. 2012. A ratio estimator under general sampling design. Austrian Journal of Statistics, 41(2): 105-115Google Scholar

  • [4] ARCOS, A., RUEDA, M., MARTINEZ, M.D., GONZALEZ, S. and ROMAN, Y. 2005. Incorporating the auxiliary information available in variance estimation. Applied Mathematics and Computation, 160: 387-399Google Scholar

  • [5] COCHRAN, W. G. 1977: Sampling techniques, Third Edition, Wiley Eastern LimitedGoogle Scholar

  • [6] DAS, A.K. and TRIPATHI, T.P. 1978. Use of auxiliary information in estimating the finite population variance. Sankhya, 40: 139-148Google Scholar

  • [7] GARCIA, M.K. and CEBRAIN, A.A. 1997. Variance estimation using auxiliary information: An almost unbiased multivariate ratio estimator. Metrika, 45: 171-178CrossrefGoogle Scholar

  • [8] GUPTA, S. and SHABBIR, J. 2008. Variance estimation in simple random sampling using auxiliary information. Hacettepe Journal of Mathematics and Statistics, 37: 57-67Google Scholar

  • [9] ISAKI, C.T. 1983. Variance estimation using auxiliary information. Journal of the American Statistical Association, 78: 117-123CrossrefGoogle Scholar

  • [10] KADILAR, C. and CINGI, H. 2006a. Improvement in variance estimation using auxiliary information. Hacettepe Journal of Mathematics and Statistics, 35 (1): 111-115Google Scholar

  • [11] KADILAR, C. and CINGI, H. 2006b. Ratio estimators for population variance in simple and stratified sampling. Applied Mathematics and Computation, 173: 1047-1058Web of ScienceGoogle Scholar

  • [12] MURTHY, M.N. 1967. Sampling theory and methods. Statistical Publishing Society, Calcutta, IndiaGoogle Scholar

  • [13] PRASAD, B. and SINGH, H.P. 1990. Some improved ratio type estimators of finite population variance in sample surveys. Communication in Statistics: Theory and Methods, 19: 1127-1139Google Scholar

  • [14] REDDY, V.N. 1974. On a transformed ratio method of estimation, Sankhya C, 36: 59-70Google Scholar

  • [15] SHABBIR, J. and GUPTA, S. 2006. On estimation of finite population variance. Journal of Interdisciplinary Mathematics, 9(2), 405-419Google Scholar

  • [16] SINGH, D. and CHAUDHARY, F.S. 1986. Theory and analysis of sample survey designs. New Age International PublisherGoogle Scholar

  • [17] SINGH, H.P. and SOLANKI, R.S. 2013. A new procedure for variance estimation in simple random sampling using auxiliary information. Statistical Papers, 54, 479-497CrossrefWeb of ScienceGoogle Scholar

  • [18] SINGH, H.P., UPADHYAYA, U.D. and NAMJOSHI, U.D. 1988. Estimation of finite population variance. Current Science, 57: 1331-1334Google Scholar

  • [19] SISODIA, B.V.S. and DWIVEDI, V.K. 1981. A modified ratio estimator using coefficient of variation of auxiliary variable. Journal of the Indian Society of Agricultural Statistics, 33(1): 13-18Google Scholar

  • [20] SUBRAMANI, J. and KUMARAPANDIYAN, G. 2012a. Variance estimation using median of the auxiliary variable. International Journal of Probability and Statistics, Vol. 1(3), 36-40Google Scholar

  • [21] SUBRAMANI, J. and KUMARAPANDIYAN, G. 2012b. Variance estimation using quartiles and their functions of an auxiliary variable, International Journal of Statistics and Applications, 2012, Vol. 2(5), 67-42Google Scholar

  • [22] SUBRAMANI, J. and KUMARAPANDIYAN, G. 2012c. Estimation of variance using deciles of an auxiliary variable. Proceedings of International Conference on Frontiers of Statistics and Its Applications, Bonfring Publisher, 143-149Google Scholar

  • [23] SUBRAMANI, J. and KUMARAPANDIYAN, G. 2013. Estimation of variance using known coefficient of variation and median of an auxiliary variable. Journal of Modern Applied Statistical Methods, Vol. 12(1), 58-64Google Scholar

  • [24] TAILOR, R. and SHARMA, B. 2012. Modified estimators of population variance in presence of auxiliary information. Statistics in Transition-New series, 13(1), 37-46Google Scholar

  • [25] UPADHYAYA, L. N. and SINGH, H.P. 2006. Almost unbiased ratio and product-type estimators of finite population variance in sample surveys. Statistics in Transition, 7 (5): 1087-1096Google Scholar

  • [26] UPADHYAYA, L.N. and SINGH, H.P. 1999. An estimator for population variance that utilizes the kurtosis of an auxiliary variable in sample surveys. Vikram Mathematical Journal, 19, 14-17Google Scholar

  • [27] UPADHYAYA, L.N. and SINGH, H.P. 2001. Estimation of population standard deviation using auxiliary information. American Journal of Mathematics and Management Sciences, 21(3-4), 345-358Google Scholar

  • [28] WOLTER, K.M. 1985. Introduction to Variance Estimation. Springer-VerlagGoogle Scholar

  • [29] YADAV, S.K. and KADILAR, C. 2013a. A class of ratio-cum-dual to ratio estimator of population variance. Journal of Reliability and Statistical Studies, 6(1), 29-34Google Scholar

  • [30] YADAV, S.K. and KADILAR, C. 2013b. Improved Exponential type ratio estimator of population variance. Colombian Journal of Statistics, 36(1), 145-152 Google Scholar

About the article

Published Online: 2015-06-27

Published in Print: 2015-05-01


Citation Information: Journal of Applied Mathematics, Statistics and Informatics, ISSN (Online) 1336-9180, DOI: https://doi.org/10.1515/jamsi-2015-0006.

Export Citation

© Faculty of Natural Sciences, University of Saint Cyril and Metodius. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in