Jump to ContentJump to Main Navigation
Show Summary Details

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

2 Issues per year


IMPACT FACTOR 2015: 0.571
5-year IMPACT FACTOR: 0.779

SCImago Journal Rank (SJR) 2015: 0.392
Source Normalized Impact per Paper (SNIP) 2015: 0.470
Impact per Publication (IPP) 2015: 0.694

Open Access
Online
ISSN
2299-4831
See all formats and pricing

Review of the Expression of Antimicrobial Peptide Defensin in Honey Bees Apis Mellifera L.

Rustem Ilyasov
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
/ Louisa Gaifullina
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
/ Elena Saltykova
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
/ Aleksandr Poskryakov
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
/ Alexei Nikolenko
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
Published Online: 2012-06-19 | DOI: https://doi.org/10.2478/v10289-012-0013-y

Review of the Expression of Antimicrobial Peptide Defensin in Honey Bees Apis Mellifera L.

Honey bees defensin have a high level of polymorphism and exist as two peptides - defensin 1 and 2. Defensin 1 is synthesized in the salivary glands and is responsible for social immunity. Defensin 2 is synthesized by cells of the fat body and hemolymph is responsible for individual immunity. Defensins are inducible and controlled by the interaction of Toll and Imd signaling pathways and have a broad spectrum of antimicrobial action. The use of chitosan as an immunomodulator has been shown to lead to an increase in the expression levels of defensin and abaecin in the honey bee organism. Stimulation of the transcriptional activity of the defensin genes will allow for the control of a honey bee colony's immunity level, and reduce the using of antibiotics and other chemicals.

Ekspresja Peptydu Przeciwbakteryjnego - Defensyny u Pszczoły Miodnej Apis Mellifera L. - Praca przeglądowa

Pszczoła miodna posiada w wysokim stopniu zróżnicowaną defensynę występującą w postaci dwóch peptydów - defensyny 1 oraz 2. Defensyna 1 jest syntetyzowana w gruczołach ślinowych i odpowiada za odporność społeczną pszczół, natomiast defensyna 2 syntetyzowana jest przez komórki ciała tłuszczowego oraz w hemolimfie i odpowiada za odporność indywidualną. Defensyny są indukowalne. Regulowane są poprzez współoddziaływanie szlaków sygnalizacyjnych Toll i Imd. Defensyny posiadają szerokie spektrum działania przeciwbakteryjnego. Wykazano, że zastosowanie chitozanu jako immunomodulatora prowadzi do podniesienia poziomu ekspresji defensyny i abaecyny w organizmie pszczoły miodnej. Stymulowanie aktywności transkrypcyjnej genów defensynowych pozwoli kontrolować poziom odporności rodzin pszczelich oraz zmniejszyć zastosowanie antybiotyków i innych leczniczych środków chemicznych.

Keywords: honey bee; Apis mellifera; defensin; evolution; immunity

Keywords: pszczoła miodna; Apis mellifera; defensyna; ewolucja; odporność

  • Aerts A. M., Francois I. E., Cammue B. P., Thevissen K. (2008) - The mode of antifungal action of plant, insect and human defensins. Cell. Mol. Life Sci., 65: 2069-2079. [Crossref] [PubMed]

  • Antunez K., Martin-Hernandez R., Prieto L., Meana A., Zunino P., Higes M. (2009) - Immune suppression in the honey bees (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol., 11(9): 2284-2290. [Crossref] [PubMed]

  • Arbia K. A., Babbay B. (2011) - Management strategies of honey bees diseases. J. Entomol., 8 (1): 1-15.

  • Aronstein K. A., Murray K. D., Saldivar E. (2010) - Transcriptional responses in honey bees larvae infected with chalkbrood fungus. BMC Genomics, 11: 1-12.

  • Aronstein K. A., Saldivar E. (2005) - Characterization of a honey bees Toll related receptor gene Am18w and its potential involvement in antimicrobial immune defense. Apidologie, 36: 3-14. [Crossref]

  • Bachanova K., Klaudiny J., Kopernicky J., Simuth J. (2002) - Identifcation of honey bees peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie, 33: 259-269. [Crossref]

  • Bilikova K., Gusui W., Simuth J. (2001) - Isolation of a peptide fraction from honey bees royal jelly as a potential antifoulbrood factor. Apidologie, 32: 275-283. [Crossref]

  • Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. (1999) - Antimicrobial peptides in insects; structure and function. DeComposition Immunology, 23: 329-344.

  • Bulet P., Stocklin R. (2005) - Insect antimicrobial peptides: structure, properties and gene regulation. Protein & Peptide Letters, 12: 3-11. [PubMed]

  • Casteels P., Ampe C., Jacobs F., Tempst P. (1993) - Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honey bees (Apis mellifera). J. Biol. Chem., 268: 7044-7054.

  • Casteels P., Ampe C., Jacobs F., Vaek M., Tempst P. (1989) - Apidaecins: antibacterial peptides from honey bees. The EMBO Journal, 8: 2387-2391.

  • Casteels P., Ampe C., Riviere L., Damme J. V., Elicone C., Fleming M., Jacobs F., Tempst P. (1990) - Isolation and characterization of abaecin, a major antibacterial peptide in the honey bees (Apis mellifera). Eur. J. Biochem., 187: 381-386.

  • Casteels-Josson K., Zhang W., Capaci T., Casteels P., Tempst P. (1994) - Acute transcriptional response of the honey bees peptide-antibiotics gene repertoire, required posttranslational conversion of the precursor structures. J. Biol. Chem., 269: 28569-28575.

  • Chernysh S. I., Gordya N. A., Filatova N. A. (1999) - Sacrificial mechanisms of insects: the rate of molecular and phenotypic evolution. Genetics Research, 12: 52-59.

  • Choi Y. S., Choo Y. M., Lee K. S., Yoon H. J., Kim I., Je Y. H., Sohn H. D., Jin B. R. (2008) - Cloning and expression profiling of four antibacterial peptide genes from the bumblebee Bombus ignites. Comp. Biochem. Physiol., 150: 141-146.

  • Cociancich S., Ghazi A., Hetru C., Hoffmann J. A., Letellier L. (1993) - Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem., 268: 19239-19245.

  • Dunn P. E. (1990) - Humoral immunity in insects. Immune strategy appeart to correspond to life-history characteristics. Bioscience, 40(10): 738-744. [Crossref]

  • Evans J. D., Spivak M. (2010) - Socialized medicine individual and communal disease barriers in honey bees. J. Invertebr. Pathol., 103: 562-572.

  • Evans J. D., Wheeler D. E. (2000) - Expression profiles during honeybee caste determination. Genome Biology, 2(1): research 0001.1- 0001.6.

  • Fontana R., Mendes M. A., de Souza B. M., Konno K., Cesar L. M. M., Malaspina O., Palma M. S. (2004) - Jelleines: a family of antimicrobial peptides from the Royal Jelly of honey bees (Apis mellifera). Peptides, 25: 919-928. [Crossref]

  • Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T., Kobayashi K. (1990) - A potent antibacterial protein in royal jelly. J. Biol. Chem., 265: 11333-11337.

  • Furukawa S., Taniai K., Yang J., Shono T., Yamakawa M. (1999) - Induction of gene expression of antibacterial proteins by chitin oligomers in the silkworm, Bombyx mori. Insect Mol. Biol., 8(1): 145-148. [Crossref] [PubMed]

  • Genersch E., Aubert M. (2010) - Emerging and re-emerging viruses of the honey bees (Apis mellifera L.). Vet. Res., 41(6): 54-74. [PubMed] [Crossref]

  • Glupov V. V. (2001) - Mechanisms of resistance of insects, in: Glupov V. V. (ed.) Insect Pathogens: structural and functional aspects, Moscow, Kruglyi god, 2001, pp 475-557.

  • Gregory G., Evans J. D., Rinderer T., de Guzman L. (2005) - Conditional immunegene suppression of honey bees parasitized by Varroa mites. J. Insect Sci., 5: 1-5.

  • Grobov O. F., Lihotin A. K. (1989) - Diseases and pests of bees. Moscow: Agropromisdat. p: 239.

  • Hanzawa H., Shimada I., Kuzuhara T., Komano H., Kohda D., Inagaki F., Natori S., Arata Y. (1990) - 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Letters, 269: 413-420.

  • Higes M., Martin-Hernandez R., Gonzalez-Porto A. V., Garcia-Palencia P., Meana A., del Nozal M. J. (2009) - Honey bees colony collapse due to Nosema cernae in professional apiaries. Environmental Microbiology Reports, 1: 110-113.

  • Hoffmann J. A. (2003) - The immune response of Drosophila. Nature, 426: 33-38.

  • Hoffmann J. A., Kafatos F. C., Janawey C. A., Ezekovitz R. A. B. (1999) - Phylogenetic perspectives in innate immunity. Science, 284: 1313-1318.

  • Hoffmann J. A., Richhart J. M. (1997) - Drosophila immunity. Trends in Cell Biology, 7: 309-316.

  • Ilyasov R. A., Poskryakov A. V., Nikolenko A. G. (2008) - Polymorphism of antimicrobial peptides in honey bee population in the Urals. Biodiversity: Problems and perspectives of preservation. Proceedings of the International Scientific Conference, Penza, 13-16 may, 2008, Volume 2. pp: 247-248.

  • Klaudiny J., Hanes J., Kulifajova J., Albert S., Simuth J. (1994) - Molecular cloning of two cDNAs from the head of the nurse honey bee (Apis mellifera L.) for coding related proteins of royal jelly. J. Apic. Res., 33: 105-111.

  • Klaudiny J., Albert S., Bachanova K., Kopernicky J., Simuth J. (2005) - Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honey bees Apis mellifera. Insect Biochemi. Mol. Biol., 35: 11-22.

  • Klee J., Besana A. M., Genersch E., Gisder S., Nanetti A., Tam D. Q. (2007) - Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertbr. Pathol., 96: 1-10. [PubMed]

  • Kwakman H. S., te Velde A. A., de Boer L., Speijer D., Vandenbroucke-Grauls C. M. J. E., Zaat S. A. J. (2010) - How honey kills bacteria. The FASEB Journal, 24(7): 2576-2582. [Crossref]

  • Long M. (2001) - Evolution of novel genes. Curr. Opinion Genet. Dev., 11: 673-680 [Crossref]

  • Lopez L., Morales G., Ursic R., Wolff M., Lowneberger C. (2003) - Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of Chagas disease. Insect Biochem. Mol. Biol., 33: 439-447. [PubMed] [Crossref]

  • Mandrioli M., Bugli S., Saltini S., Genedani S., Ottaviani E. (2003) - Molecular characterization of a defensin in the IZD-MB-0503 cell line derived from immunocytes of the insect Mamestra brassicae (Lepidoptera). Biology of the Cell, 95: 53-57.

  • Miyagi T., Peng Ch. Y. S., Chuang R. Y., Mussen E. C., Spivak M. S., Doi R. H. (2000) - Verification of oxytetracyclineresistant American foulbrood pathogen Paenibacillus larvae in the United States. J. Invertebr. Pathol., 75: 95-96. [Crossref]

  • Osta M. A., Christophides G. K., Vlachou D., Kafatos F. C. (2004) - Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J. Exp. Biol., 207(15): 2551-2563.

  • Qu N., Jiang J., Sun L., Lai C., Sun L., Wu X. (2008) - Proteomic Characterization of Royal Jelly Proteins in Chinese (Apis cerana cerana), European (Apis mellifera) Honey bees, Biochemistry, 1: 1-12.

  • Raj P. A., Dentino A. R. (2002) - Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiology Letters, 206: 9-18.

  • Saltykova E. S., Gaifullina L. R., Ilyasov R. A., Nikolenko A. G. (2010a) - Chitosan action on the main antibacterial peptides induction of the honey bee. Modern perspectives in chitin and chitosan studies. Proceedings of the Xth International Conference, Nizhny Novgorod, 29 June-2 July, 2010. pp. 308-310.

  • Saltykova E. S., Ilyasov R. A., Gaifullina L. R., Poskryakov A. V., Yamidanov R. S., Nikolenko A. G. (2010b) - Changes in the expression level of antimicrobial peptides in the honeybee (Apis mellifera mellifera L.) organism. Modern beekeeping. Concerns, experiences, new technologies: Proceedings of the International Scientific-practical Conference. Yaroslavl, 12- 13 August, 2010. pp. 159-160.

  • Shahabuddin M., Fields I., Bulet P., Hoffmann J. A., Miller L. (1998) - Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Experimental Parasitology, 89 (1): 103-112. [Crossref] [PubMed]

  • Solbrig O. T., Solbrig D. J. (1979) - An Introduction to Population Biology and Evolution. Addison Wesley Publishing Company, Reading, Massachusets. p: 468.

  • Stanley-Samuelson D. W. (1994) - Prostaglandins, related eicosanoids in insects. Advances in Insect Physiology, 24: 115-212.

  • Taniani K., Wago H., Yamakawa M. (1997) - In vitro phagocytosis of Escherichia coli and release of lipopolysaccharide by adhering hemocytes of the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun., 231: 623-627.

  • Williams G. R., Rogers R. E. L., Kalkstein A. L., Taylor B. A., Shutler D., Ostiguy N. (2009) - Deformed wing virus in western honey bees (Apis mellifera) from Atlantic Canada, the first description of an overtlyinfected emerging queen. J. Invertebr. Pathol., 101: 77-79. [Crossref]

  • Yang D., Biragyn A., Hoover D. M., Lubkowski J., Oppenheim J. J. (2004) - Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annual Review of Immunology, 22: 181-215. [Crossref]

  • Yoon H. J., Sohn M. R., Young M. C., Jianhong L., Hung D. S., Byung R. J. (2009) - Defensin gene sequences of three different bumblebees, Bombus spp. Journal of Asia-Pacific Entomology, 12: 27-31.

  • Yoshiyama M., Kimura K. (2010) - Characterization of antimicrobial peptide genes from Japanese honey bees Apis cerana japonica (Hymenoptera: Apidae). Applied Entomology and Zoology, 45(4): 609-614. [Crossref]

  • Zhu P., Lu Z. (1992) - Studies on the antibacterial substances of Pieris rapae induced by deltamethrin and trichlorfon. 19 Int. Congr. Entomol, Beijing, p: 594.

About the article


Published Online: 2012-06-19

Published in Print: 2012-06-01


Citation Information: Journal of Apicultural Science, ISSN (Print) 1643-4439, DOI: https://doi.org/10.2478/v10289-012-0013-y. Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jiří Danihlík, Kate Aronstein, and Marek Petřivalský
Journal of Apicultural Research, 2016, Page 1

Comments (0)

Please log in or register to comment.
Log in