Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

2 Issues per year

IMPACT FACTOR 2016: 0.722
5-year IMPACT FACTOR: 0.944

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.414
Source Normalized Impact per Paper (SNIP) 2016: 0.616

Open Access
See all formats and pricing
More options …

Review of the Expression of Antimicrobial Peptide Defensin in Honey Bees Apis Mellifera L.

Rustem Ilyasov
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Louisa Gaifullina
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Saltykova
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandr Poskryakov
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexei Nikolenko
  • Institute of Biochemistry and Genetics, Ufa Science Center of the Russian Academy of Sciences, Prospekt Oktyabrya, 71, Ufa, 450054, Bashkortostan Republic, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-06-19 | DOI: https://doi.org/10.2478/v10289-012-0013-y

Review of the Expression of Antimicrobial Peptide Defensin in Honey Bees Apis Mellifera L.

Honey bees defensin have a high level of polymorphism and exist as two peptides - defensin 1 and 2. Defensin 1 is synthesized in the salivary glands and is responsible for social immunity. Defensin 2 is synthesized by cells of the fat body and hemolymph is responsible for individual immunity. Defensins are inducible and controlled by the interaction of Toll and Imd signaling pathways and have a broad spectrum of antimicrobial action. The use of chitosan as an immunomodulator has been shown to lead to an increase in the expression levels of defensin and abaecin in the honey bee organism. Stimulation of the transcriptional activity of the defensin genes will allow for the control of a honey bee colony's immunity level, and reduce the using of antibiotics and other chemicals.

Ekspresja Peptydu Przeciwbakteryjnego - Defensyny u Pszczoły Miodnej Apis Mellifera L. - Praca przeglądowa

Pszczoła miodna posiada w wysokim stopniu zróżnicowaną defensynę występującą w postaci dwóch peptydów - defensyny 1 oraz 2. Defensyna 1 jest syntetyzowana w gruczołach ślinowych i odpowiada za odporność społeczną pszczół, natomiast defensyna 2 syntetyzowana jest przez komórki ciała tłuszczowego oraz w hemolimfie i odpowiada za odporność indywidualną. Defensyny są indukowalne. Regulowane są poprzez współoddziaływanie szlaków sygnalizacyjnych Toll i Imd. Defensyny posiadają szerokie spektrum działania przeciwbakteryjnego. Wykazano, że zastosowanie chitozanu jako immunomodulatora prowadzi do podniesienia poziomu ekspresji defensyny i abaecyny w organizmie pszczoły miodnej. Stymulowanie aktywności transkrypcyjnej genów defensynowych pozwoli kontrolować poziom odporności rodzin pszczelich oraz zmniejszyć zastosowanie antybiotyków i innych leczniczych środków chemicznych.

Keywords: honey bee; Apis mellifera; defensin; evolution; immunity

Keywords: pszczoła miodna; Apis mellifera; defensyna; ewolucja; odporność

  • Aerts A. M., Francois I. E., Cammue B. P., Thevissen K. (2008) - The mode of antifungal action of plant, insect and human defensins. Cell. Mol. Life Sci., 65: 2069-2079.CrossrefPubMedGoogle Scholar

  • Antunez K., Martin-Hernandez R., Prieto L., Meana A., Zunino P., Higes M. (2009) - Immune suppression in the honey bees (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol., 11(9): 2284-2290.CrossrefPubMedGoogle Scholar

  • Arbia K. A., Babbay B. (2011) - Management strategies of honey bees diseases. J. Entomol., 8 (1): 1-15.Google Scholar

  • Aronstein K. A., Murray K. D., Saldivar E. (2010) - Transcriptional responses in honey bees larvae infected with chalkbrood fungus. BMC Genomics, 11: 1-12.Google Scholar

  • Aronstein K. A., Saldivar E. (2005) - Characterization of a honey bees Toll related receptor gene Am18w and its potential involvement in antimicrobial immune defense. Apidologie, 36: 3-14.CrossrefGoogle Scholar

  • Bachanova K., Klaudiny J., Kopernicky J., Simuth J. (2002) - Identifcation of honey bees peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie, 33: 259-269.CrossrefGoogle Scholar

  • Bilikova K., Gusui W., Simuth J. (2001) - Isolation of a peptide fraction from honey bees royal jelly as a potential antifoulbrood factor. Apidologie, 32: 275-283.CrossrefGoogle Scholar

  • Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. (1999) - Antimicrobial peptides in insects; structure and function. DeComposition Immunology, 23: 329-344.Google Scholar

  • Bulet P., Stocklin R. (2005) - Insect antimicrobial peptides: structure, properties and gene regulation. Protein & Peptide Letters, 12: 3-11.PubMedGoogle Scholar

  • Casteels P., Ampe C., Jacobs F., Tempst P. (1993) - Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honey bees (Apis mellifera). J. Biol. Chem., 268: 7044-7054.Google Scholar

  • Casteels P., Ampe C., Jacobs F., Vaek M., Tempst P. (1989) - Apidaecins: antibacterial peptides from honey bees. The EMBO Journal, 8: 2387-2391.Google Scholar

  • Casteels P., Ampe C., Riviere L., Damme J. V., Elicone C., Fleming M., Jacobs F., Tempst P. (1990) - Isolation and characterization of abaecin, a major antibacterial peptide in the honey bees (Apis mellifera). Eur. J. Biochem., 187: 381-386.Google Scholar

  • Casteels-Josson K., Zhang W., Capaci T., Casteels P., Tempst P. (1994) - Acute transcriptional response of the honey bees peptide-antibiotics gene repertoire, required posttranslational conversion of the precursor structures. J. Biol. Chem., 269: 28569-28575.Google Scholar

  • Chernysh S. I., Gordya N. A., Filatova N. A. (1999) - Sacrificial mechanisms of insects: the rate of molecular and phenotypic evolution. Genetics Research, 12: 52-59.Google Scholar

  • Choi Y. S., Choo Y. M., Lee K. S., Yoon H. J., Kim I., Je Y. H., Sohn H. D., Jin B. R. (2008) - Cloning and expression profiling of four antibacterial peptide genes from the bumblebee Bombus ignites. Comp. Biochem. Physiol., 150: 141-146.Google Scholar

  • Cociancich S., Ghazi A., Hetru C., Hoffmann J. A., Letellier L. (1993) - Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem., 268: 19239-19245.Google Scholar

  • Dunn P. E. (1990) - Humoral immunity in insects. Immune strategy appeart to correspond to life-history characteristics. Bioscience, 40(10): 738-744.CrossrefGoogle Scholar

  • Evans J. D., Spivak M. (2010) - Socialized medicine individual and communal disease barriers in honey bees. J. Invertebr. Pathol., 103: 562-572.Google Scholar

  • Evans J. D., Wheeler D. E. (2000) - Expression profiles during honeybee caste determination. Genome Biology, 2(1): research 0001.1- 0001.6.Google Scholar

  • Fontana R., Mendes M. A., de Souza B. M., Konno K., Cesar L. M. M., Malaspina O., Palma M. S. (2004) - Jelleines: a family of antimicrobial peptides from the Royal Jelly of honey bees (Apis mellifera). Peptides, 25: 919-928.CrossrefGoogle Scholar

  • Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T., Kobayashi K. (1990) - A potent antibacterial protein in royal jelly. J. Biol. Chem., 265: 11333-11337.Google Scholar

  • Furukawa S., Taniai K., Yang J., Shono T., Yamakawa M. (1999) - Induction of gene expression of antibacterial proteins by chitin oligomers in the silkworm, Bombyx mori. Insect Mol. Biol., 8(1): 145-148.CrossrefPubMedGoogle Scholar

  • Genersch E., Aubert M. (2010) - Emerging and re-emerging viruses of the honey bees (Apis mellifera L.). Vet. Res., 41(6): 54-74.PubMedCrossrefGoogle Scholar

  • Glupov V. V. (2001) - Mechanisms of resistance of insects, in: Glupov V. V. (ed.) Insect Pathogens: structural and functional aspects, Moscow, Kruglyi god, 2001, pp 475-557.Google Scholar

  • Gregory G., Evans J. D., Rinderer T., de Guzman L. (2005) - Conditional immunegene suppression of honey bees parasitized by Varroa mites. J. Insect Sci., 5: 1-5.Google Scholar

  • Grobov O. F., Lihotin A. K. (1989) - Diseases and pests of bees. Moscow: Agropromisdat. p: 239.Google Scholar

  • Hanzawa H., Shimada I., Kuzuhara T., Komano H., Kohda D., Inagaki F., Natori S., Arata Y. (1990) - 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Letters, 269: 413-420.Google Scholar

  • Higes M., Martin-Hernandez R., Gonzalez-Porto A. V., Garcia-Palencia P., Meana A., del Nozal M. J. (2009) - Honey bees colony collapse due to Nosema cernae in professional apiaries. Environmental Microbiology Reports, 1: 110-113.Google Scholar

  • Hoffmann J. A. (2003) - The immune response of Drosophila. Nature, 426: 33-38.Google Scholar

  • Hoffmann J. A., Kafatos F. C., Janawey C. A., Ezekovitz R. A. B. (1999) - Phylogenetic perspectives in innate immunity. Science, 284: 1313-1318.Google Scholar

  • Hoffmann J. A., Richhart J. M. (1997) - Drosophila immunity. Trends in Cell Biology, 7: 309-316.Google Scholar

  • Ilyasov R. A., Poskryakov A. V., Nikolenko A. G. (2008) - Polymorphism of antimicrobial peptides in honey bee population in the Urals. Biodiversity: Problems and perspectives of preservation. Proceedings of the International Scientific Conference, Penza, 13-16 may, 2008, Volume 2. pp: 247-248.Google Scholar

  • Klaudiny J., Hanes J., Kulifajova J., Albert S., Simuth J. (1994) - Molecular cloning of two cDNAs from the head of the nurse honey bee (Apis mellifera L.) for coding related proteins of royal jelly. J. Apic. Res., 33: 105-111.Google Scholar

  • Klaudiny J., Albert S., Bachanova K., Kopernicky J., Simuth J. (2005) - Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honey bees Apis mellifera. Insect Biochemi. Mol. Biol., 35: 11-22.Google Scholar

  • Klee J., Besana A. M., Genersch E., Gisder S., Nanetti A., Tam D. Q. (2007) - Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertbr. Pathol., 96: 1-10.PubMedGoogle Scholar

  • Kwakman H. S., te Velde A. A., de Boer L., Speijer D., Vandenbroucke-Grauls C. M. J. E., Zaat S. A. J. (2010) - How honey kills bacteria. The FASEB Journal, 24(7): 2576-2582.CrossrefGoogle Scholar

  • Long M. (2001) - Evolution of novel genes. Curr. Opinion Genet. Dev., 11: 673-680CrossrefGoogle Scholar

  • Lopez L., Morales G., Ursic R., Wolff M., Lowneberger C. (2003) - Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of Chagas disease. Insect Biochem. Mol. Biol., 33: 439-447.PubMedCrossrefGoogle Scholar

  • Mandrioli M., Bugli S., Saltini S., Genedani S., Ottaviani E. (2003) - Molecular characterization of a defensin in the IZD-MB-0503 cell line derived from immunocytes of the insect Mamestra brassicae (Lepidoptera). Biology of the Cell, 95: 53-57.Google Scholar

  • Miyagi T., Peng Ch. Y. S., Chuang R. Y., Mussen E. C., Spivak M. S., Doi R. H. (2000) - Verification of oxytetracyclineresistant American foulbrood pathogen Paenibacillus larvae in the United States. J. Invertebr. Pathol., 75: 95-96.CrossrefGoogle Scholar

  • Osta M. A., Christophides G. K., Vlachou D., Kafatos F. C. (2004) - Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J. Exp. Biol., 207(15): 2551-2563.Google Scholar

  • Qu N., Jiang J., Sun L., Lai C., Sun L., Wu X. (2008) - Proteomic Characterization of Royal Jelly Proteins in Chinese (Apis cerana cerana), European (Apis mellifera) Honey bees, Biochemistry, 1: 1-12.Google Scholar

  • Raj P. A., Dentino A. R. (2002) - Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiology Letters, 206: 9-18.Google Scholar

  • Saltykova E. S., Gaifullina L. R., Ilyasov R. A., Nikolenko A. G. (2010a) - Chitosan action on the main antibacterial peptides induction of the honey bee. Modern perspectives in chitin and chitosan studies. Proceedings of the Xth International Conference, Nizhny Novgorod, 29 June-2 July, 2010. pp. 308-310.Google Scholar

  • Saltykova E. S., Ilyasov R. A., Gaifullina L. R., Poskryakov A. V., Yamidanov R. S., Nikolenko A. G. (2010b) - Changes in the expression level of antimicrobial peptides in the honeybee (Apis mellifera mellifera L.) organism. Modern beekeeping. Concerns, experiences, new technologies: Proceedings of the International Scientific-practical Conference. Yaroslavl, 12- 13 August, 2010. pp. 159-160.Google Scholar

  • Shahabuddin M., Fields I., Bulet P., Hoffmann J. A., Miller L. (1998) - Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Experimental Parasitology, 89 (1): 103-112.CrossrefPubMedGoogle Scholar

  • Solbrig O. T., Solbrig D. J. (1979) - An Introduction to Population Biology and Evolution. Addison Wesley Publishing Company, Reading, Massachusets. p: 468.Google Scholar

  • Stanley-Samuelson D. W. (1994) - Prostaglandins, related eicosanoids in insects. Advances in Insect Physiology, 24: 115-212.Google Scholar

  • Taniani K., Wago H., Yamakawa M. (1997) - In vitro phagocytosis of Escherichia coli and release of lipopolysaccharide by adhering hemocytes of the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun., 231: 623-627.Google Scholar

  • Williams G. R., Rogers R. E. L., Kalkstein A. L., Taylor B. A., Shutler D., Ostiguy N. (2009) - Deformed wing virus in western honey bees (Apis mellifera) from Atlantic Canada, the first description of an overtlyinfected emerging queen. J. Invertebr. Pathol., 101: 77-79.CrossrefGoogle Scholar

  • Yang D., Biragyn A., Hoover D. M., Lubkowski J., Oppenheim J. J. (2004) - Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annual Review of Immunology, 22: 181-215.CrossrefGoogle Scholar

  • Yoon H. J., Sohn M. R., Young M. C., Jianhong L., Hung D. S., Byung R. J. (2009) - Defensin gene sequences of three different bumblebees, Bombus spp. Journal of Asia-Pacific Entomology, 12: 27-31.Google Scholar

  • Yoshiyama M., Kimura K. (2010) - Characterization of antimicrobial peptide genes from Japanese honey bees Apis cerana japonica (Hymenoptera: Apidae). Applied Entomology and Zoology, 45(4): 609-614.CrossrefGoogle Scholar

  • Zhu P., Lu Z. (1992) - Studies on the antibacterial substances of Pieris rapae induced by deltamethrin and trichlorfon. 19 Int. Congr. Entomol, Beijing, p: 594.Google Scholar

About the article

Published Online: 2012-06-19

Published in Print: 2012-06-01

Citation Information: Journal of Apicultural Science, Volume 56, Issue 1, Pages 115–124, ISSN (Print) 1643-4439, DOI: https://doi.org/10.2478/v10289-012-0013-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Qiming Xu, Zhiqiang Zheng, Bin Wang, Hailei Mao, and Feng Yan
ACS Applied Materials & Interfaces, 2017, Volume 9, Number 17, Page 14656
Jiří Danihlík, Kate Aronstein, and Marek Petřivalský
Journal of Apicultural Research, 2015, Volume 54, Number 2, Page 123

Comments (0)

Please log in or register to comment.
Log in