Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

2 Issues per year


IMPACT FACTOR 2016: 0.722
5-year IMPACT FACTOR: 0.944

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.414
Source Normalized Impact per Paper (SNIP) 2016: 0.616

Open Access
Online
ISSN
2299-4831
See all formats and pricing
More options …

Residues of Neonicotinoid Insecticides in Bee Collected Plant Materials from Oilseed Rape Crops and their Effect on Bee Colonies

Krystyna Pohorecka / Piotr Skubida / Artur Miszczak / Piotr Semkiw / Piotr Sikorski / Katarzyna Zagibajło / Dariusz Teper / Zbigniew Kołtowski / Marta Skubida / Dagmara Zdańska / Andrzej Bober
Published Online: 2013-01-12 | DOI: https://doi.org/10.2478/v10289-012-0029-3

Abstract

The risk exposure of bee colonies to the toxicity of systemic neonicotinoid insecticides was assessed. Various methods of chemical prevention of commercial winter and spring oilseed rape crops in field-realistic conditions were taken into account in the assessment. Pesticides were applied in accordance with the actual agricultural practice. Commercial crop protection products with thiamethoxam, clothianidin or imidacloprid were used as seed treatment. Formulations containing acetamiprid or thiacloprid were used for spraying. Fifteen healthy bee colonies were placed in close proximity to each of the oilseed rape fields throughout the blooming period. During florescence, the samples of nectar (directly from flowers and nectar flow from combs) and pollen loads were collected repeatedly. Samples of honey, bee bread and adult bees were taken one week after the end of plants flowering. To ensure high specificity and sensitivity of analysed pestcicides modified QuEChERS extraction method and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used. The five of neonicotinoid insecticides (imidacloprid, clothianidin, thiametoxam, acetamiprid and thiacloprid) were analyzed in multi-residue method with 0.1 - 10 ng/g limits of detection. Palynological analysis was done to determine the botanical origin of the nectar, honey and pollen. Development of bee colonies (brood area, worker biomass, colony health) was assessed every 3 weeks until the end of the beekeeping season. The amount of pollen collected by bees per hive, bee bread area and rape honey yield was also measured. The long-term effects of insecticides on bees were estimated using the same methods in April of the following year.

All the neonicotinoid insecticides applied to control oilseed rape pests were present in the samples of nectar and pollen. Their residue levels were lower than the acute oral and contact LD50 values. Among five examined neonicotinoids, the most frequently detected were: thiamethoxam, thiacloprid and acetamiprid. These substances were present in 65, 64, and 51% of the nectar samples and in 37, 62, and 45% of the pollen samples, respectively. The highest level of residues were noted after the thiamethoxam seed treatment; on average, 4.2 and 3.8 ng/g in the nectar and pollen samples. In the nectar and pollen samples from winter rape fields, lower levels of neonicotinoid residues were found in comparison to spring rape samples. The contaminations of neonicotinoids applied as seed dressing in nectar samples were significantly higher in comparison to the pollen samples. No negative effects of neonicotinoids on the bee mortality, brood development, strength, and honey yield of healthy bee colonies were found throughout the study period. However, the risk exposure of bee colonies on adverse impact of pesticide residues is high in areas of intensively cultivated oilseed rape.

Streszczenie

Celem badań była ocena narażenia rodzin pszczelich na toksyczne oddziaływanie pozostałości systemicznych insektycydów neonikotynoidowych zastosowanych w warunkach polowych do chemicznej ochrony upraw rzepaku.

Badania polowe przeprowadzone zostały przy współpracy z Rolniczym Zakładem Doświadczalnym Instytutu Uprawy, Nawożenia i Gleboznawstwa w Puławach na 2 plantacjach rzepaku ozimego w roku 2010 i 3 plantacjach rzepaku jarego w roku 2012. Do zwalczania szkodników zastosowano w formie zapraw nasiennych preparaty zawierające tiametoksam, chlotianidynę lub imidachlopryd oraz w formie oprysku dolistnego, preparaty z acetamiprydem lub tiachloprydem. Na wszystkich uprawach wykonane zostały także zabiegi chwastobójcze i grzybobójcze. Na okres kwitnienia roślin rzepaku, w pobliżu każdej plantacji umieszczono 15 rodzin pszczelich, z czego 5 rodzin w każdej grupie przeznaczonych było jedynie do pozyskiwania obnóży pyłkowych. Grupę kontrolną stanowiły rodziny usytuowane w terenie rolniczym wolnym od dużych upraw rzepaku. Od chwili wywiezienia rodzin pszczelich na rzepak, aż do okresu ich zazimowania (w roku 2012 do września) monitorowano śmiertelność pszczół oraz cyklicznie oceniano parametry świadczące o kondycji i rozwoju rodzin (liczbę ramek obsiadanych przez pszczoły oraz powierzchnię czerwiu krytego i otwartego). Do badań laboratoryjnych pobrano próbki nektaru z kwiatów rzepaku, próbki nektaru, miodu i pyłku (obnóży pyłkowych i pierzgi) zgromadzonego przez pszczoły w plastrach oraz próbki pszczół. Pochodzenie botaniczne próbek materiału roślinnego określono na podstawie analizy palinologicznej. Analizę pozostałości insektycydów w zebranym materiale wykonano metodą QuEChERS z wykorzystaniem chromatografu cieczowego sprzężonego z podwójnym detektorem masowym (LC-MS/MS).

W badanych próbkach nektaru i pyłku wykryto pozostałości wszystkich substancji neonikotynoidowych aplikowanych zarówno w formie zapraw nasiennych, jak i oprysku. Znacząca liczba próbek zanieczyszczona była dodatkowo substancjami, których nie stosowano w czasie zabiegów. Największa liczba próbek skażona była tiametoksamem, tiachloprydem i acetamiprydem. Obecność tych substancji wykryto odpowiednio w 65, 64 i 51% ogółem przebadanych próbek nektaru i miodu oraz w 37, 62 i 45% próbek pyłku. We wszystkich rodzajach próbek stężenie neonikotynoidów było niższe od ich doustnej i kontaktowej dawki letalnej (LD50) dla pszczół, ale w ponad 50% próbek obecne były co najmniej 2 substancje z tej grupy, a w ponad 25% co najmniej 3. Najwyższy poziom skażenia nektaru i pyłku odnotowano w przypadku zaprawiania nasion rzepaku jarego preparatem insektycydowym zawierającym tiametoksam. Insektycydy stosowane w formie zapraw nasiennych powodowały istotnie wyższe skażenie nektaru i miodu niż pyłku. W próbkach nektaru i pyłku pochodzących z rzepaku ozimego stwierdzono niższy poziom pozostałości neonikotynoidów w porównaniu do próbek z rzepaku jarego. W okresie całego sezonu pszczelarskiego 2010 i 2012 roku nie stwierdzono zwiększonej śmiertelności pszczół ani zaburzeń w rozwoju, kondycji i produkcyjności rodzin pszczelich. Po okresie zimowania 2010/2011 kondycja i rozwój rodzin pszczelich były także prawidłowe.

Pozostałości insektycydów neonikotynoidowych znajdujące się w nektarze i pyłku zbieranym przez pszczoły z upraw rzepaku chronionego insektycydami neonikotynoidowymi stwarzają wysokie ryzyko ich toksycznego oddziaływania na rodziny pszczele, szczególnie dla rodzin osłabionych innymi czynnikami (np. obecnością patogenów, pasożytów), ze względu na możliwość wystąpienia zjawiska interakcji i/lub synergizmu.

Keywords: honey bees; oilseed rape; neonicotinoid insecticides; seed-treatment; spraying; residue analysis; short- and long-term assessment.

Słowa kluczowe: pszczoła miodna; rzepak; insektycydy neonikotynoidowe; zaprawianie nasion; opryski; analiza pozostałości; wpływ na rodziny pszczele.

  • Alaux C., Brunet J. L., Dussaubat C., Mondet F., Tchamitchan S., Cousin M., Brillard J., Baldy A., Belzunces L. P., LeConte Y. (2010) - Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ.Microbiol., 12: 774-782. CrossrefWeb of SciencePubMedGoogle Scholar

  • Aliouane Y., Adessalam K., El Hassani A.K., Gary V., Armengaud C.,Lambin M., Gauthier M. (2009) - Subchronic exposure of honeybees to sublethal doses of pesticides: effect on behavior. Environ. Toxicol. Chem., 28: 113-122. PubMedCrossrefWeb of ScienceGoogle Scholar

  • Anastassiades M., Lehotay S. (2003) - Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “Dispersive Solid-Extraction” for the determination of pesticide residue in produce. J. AOAC Int., 86: 412-431.Google Scholar

  • Aufauvre J., Biron D. G., Vidau C., Fontbonne R., Roudel M., Diogon M., Vigues B., Belzunces L. P., Delbac F., Blot N. (2012) - Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honey bee. Sci. Rep., 2: 326.Google Scholar

  • Bailey J., Scott-Dupree C., Harris R., Tolman J., Harris B. (2005) - Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada. Apidologie, 36: 623-633. CrossrefGoogle Scholar

  • Bernal J., Garrido-Bailon E., del Nozal M. J., Gonzalez-Porto A. V., Martin-Hernandez R., Diego J. C., Jimenez J. J., Bernal J. L., Higes M. (2010) - Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J. Econ. Entomol., 103: 1964-1971. Web of ScienceCrossrefGoogle Scholar

  • Bortolotti L., Montanari R., Marcelino J., Medrzycki P., Maini S., Porrini C. (2003) - Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectol., 56: 63-67. Google Scholar

  • Chauzat M. P., Carpentier P., Martel A. C., Bougeard S., Cougoule N., Porta P., Lachaize J., Madec F., Aubert M., Faucon J. P. (2009) - Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ. Entomol., 38: 514-523. Web of SciencePubMedCrossrefGoogle Scholar

  • Chauzat M. P., Faucon J. P., Martel A. C., Lachaize J., Cougoule N., Aubert M. (2006) - A survey of pesticide residues in pollen loads collected by honey bees in France. J. Econ. Entomol., 99: 253-262. CrossrefGoogle Scholar

  • Chauzat M. P., Martel A. C., Cougoule N., Porta P., Lachaize J., Zeggane S., Aubert M., Carpentier P., Faucon J. P. (2011) - An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera Apidae) to monitor pesticide presences in continental France. Environ.Toxicol. Chem., 30: 103-111. Web of ScienceCrossrefGoogle Scholar

  • Cutler G. C., Scott-Dupree C. D. (2007) - Exposure to clothianidin seed-treated canola has no long-term impact on honey bees. J. Econ. Entomol., 100: 765-772. Web of ScienceCrossrefGoogle Scholar

  • Decourtye A., Armengaud C., Renou M., Devillers J., Cluzeau S.,Gauthier M., Pham- Delègue M. H. (2004b) - Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pest. Biochem.Physiol., 78: 83-92. CrossrefGoogle Scholar

  • Decourtye A., Devillers J. (2010) - Ecotoxicity of neonicotinoid insecticides to bees, in: Thany SH (Ed.) Insect nicotinic acetylcholine receptors, 1st edn. Springer, New York, pp. 85-95. Google Scholar

  • Decourtye A., Devillers J., Cluzeau S., Charreton M., Pham-Delègue M. H. (2004a) - Effects of imidacloprid and deltamethrin on associative learning in honeybees under semifield and laboratory conditions. Ecotoxicol.Environ. Saf., 57: 410-419. CrossrefGoogle Scholar

  • Decourtye A., Devillers J., Genecque E., Le Menach K., Budzinski H., Cluzeau S., Pham Delègue M. H (2005) - Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ.Contam. Toxicol., 48: 242-250. CrossrefGoogle Scholar

  • Decourtye A., Le Metayer M., Pottiau H., Tisseur M., Odoux J. F., Pham-Delègue M. H. (2001) - Impairment of olfactory learning performances in the honey bee after long term ingestion of imidacloprid. In Proceedings of the 7th International Symposium“Hazards of pesticides to bees”,September7-9, 1999, Avignon, France., 98: 113-117. Google Scholar

  • Desneux N., Decourtye A., Delpuech J. M. (2007) - The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol., 52: 81-106. PubMedWeb of ScienceCrossrefGoogle Scholar

  • European Food Safety Authority (2012) - Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe. EFSA Journal, 10(6): 2752. Google Scholar

  • Genersch E., von der Ohe W., Kaatz H., Schroeder A., Otten C. (2010) - The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 41: 332-352.CrossrefWeb of ScienceGoogle Scholar

  • Girolami V., Mazzon L., Squartini A., Mori N., Marzaro M., Di Bernardo A., Greatti M., Giorio C., Tapparo A. (2009) - Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J. Econ. Entomol., 102: 1808-1815. CrossrefWeb of ScienceGoogle Scholar

  • Henry M., Beguin M., Requier F., Rollin O., Odoux J. F., Aupinel P., Aptel J., Tchamitchian S., Decourtye A. (2012) - A common pesticide decreases for-aging success and survival in honey bees. Science, 336(6079): 348-350. DOI: 10.1126/science.1215039. CrossrefWeb of ScienceGoogle Scholar

  • Higes M., Martin-Hernandez R., Martinez-Salvador A., Garrido- Bailon E., Gonzalez-Porto A. V., Meana A., Bernal J. L., del Nozal M. J., Bernal J. (2010) - A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ. Microbiol Rep., 2: 243-250.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Iwasa T., Motoyama N., Ambrose J. T., Roe M. R. (2004) - Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot., 23: 371-378. CrossrefGoogle Scholar

  • Jabłoński B. (2002) - Notes on the method to investigate nectar secretion rate in flowers. J. Apic. Sci., 46(2): 117-125. Johnson R. M., Ellis M. D., Mullin C. A., Frazier M. (2010) - Pesticides and honey bee toxicity - U.S.A., Apidologie, 41(3): 312-331. Google Scholar

  • Kołtowski Z. (2007) - Degree of utilization of potential sugar yield of a rapeseed plantation by insects inrespect of rapeseed honey yield in an apiary. J. Apic. Sci., 51(2): 67-79. Google Scholar

  • Krupke C. H., Hunt G. J., Eitzer B. D., Andino G., Given K. (2012) - Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE, 7(1): e29268. DOI:10.1371/journal.pone.0029268. CrossrefGoogle Scholar

  • Laurino D., Porporato M, Patetta A., Manino A. (2011) - Toxicity of neonicotinoid insecticides to honey bees laboratory tests. Bull. Insectol., 64: 107-113. Google Scholar

  • Louveaux J., Maurizio A., Vorwohl G. (1978) - Methods of Melissopalynology. BeeWorld, 59(4): 139-157. Google Scholar

  • Mullin C. A., Frazier M., Frazier J. L., Ashcraft S., Simonds R. (2010) - High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE, 5(3): e9754. DOI: 10.1371 /journal.pone.0009754. Web of ScienceCrossrefGoogle Scholar

  • Nguyen B. K., Saegerman C., Pirard C., Mignon J., Widart J., Tuirionet B., Verheggen F. J., Berkvens D., De Pauw E., Haubruge E. (2009) - Does imidacloprid seed-treated maize have an impact on honey bee mortality? J. Econ.Entomol., 102: 616-623. CrossrefWeb of ScienceGoogle Scholar

  • Pohorecka K., Bober A., Skubida M., Zdańska D. (2011) - Epizootic status of apiaries with massive losses of bee colonies (2008-2009). J. Apic. Sci., 55(1): 137-150. Google Scholar

  • Rortaisa A., Arnolda G., Halmb M. P., Touffet-Briensb F. (2005) - Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie, 36(1): 71-83. CrossrefGoogle Scholar

  • Schneider C. W., Tautz J., Grünewald B., Fuchs S. (2012) - RFID Tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE, 7(1): e30023. DOI:10.1371/journal.pone.0030023. CrossrefGoogle Scholar

  • Schmuck R., Schöning R., Stork A., Schramel O. (2001) - Risk posed to honeybees (Apis mellifera L., Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manag. Sci., 57: 225-238. PubMedCrossrefGoogle Scholar

  • Tapparo A., Giorio C., Marzaro M., Marton D., Solda` L., Girolami V. (2011) - Rapid analysis of neonicotinoid insecticides in guttation drops of corn seedlings obtained from coated seeds. J. Environ. Monit., 13: 1564-1568. CrossrefWeb of ScienceGoogle Scholar

  • Thompson H. M., Maus C. (2007) - The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest.Manag. Sci., 63: 1058-1061.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Vidau C., Diogon M., Aufauvre J., Fontbonne R., Vigue`s B., Brunet J. L., Texier C., Biron D. G., Blot N., Alaoui H. E., Belzunces L. P., Delbac F. (2011) - Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosemaceranae. PLoS ONE, 6: e21550. Web of ScienceGoogle Scholar

  • Wallner K., Engl M. (2004) - Observations on bee colonies at rape seed fields, seed dressed with different products. In Proceddings of Beesand Pesticides Symposium, First EuropeanConference of Apidology, Udine 19-23,September 2004: 122-123. Google Scholar

  • Wiest L., Bulete A., Giroud B., Fratta C., Amic S., Lambert O., Poliquen H., Arnaudguilhem C. (2011) - Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J. Chromatogr. A, 1218: 5743-5756. Google Scholar

  • Yang E. C., Chuang Y. C., Chen Y. L., Chang L. H. (2008) - Abnormal foraging behaviour induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol., 101: 1743-1748.Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2013-01-12

Published in Print: 2012-12-01


Citation Information: Journal of Apicultural Science, ISSN (Print) 2299-4831, DOI: https://doi.org/10.2478/v10289-012-0029-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Olivier Samson-Robert, Geneviève Labrie, Madeleine Chagnon, and Valérie Fournier
PeerJ, 2017, Volume 5, Page e3670
[3]
Mitchell Andrew Czerwinski and Ben Michael Sadd
Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017
[4]
Anna Papach, Dominique Fortini, Stephane Grateau, Pierrick Aupinel, and Freddie-Jeanne Richard
Journal of Apicultural Research, 2017, Volume 56, Number 4, Page 475
[5]
Ciaran Ellis, Kirsty J. Park, Penelope Whitehorn, Arthur David, and Dave Goulson
Environmental Science & Technology, 2017, Volume 51, Number 3, Page 1727
[6]
Francisco Sanchez-Bayo, Koichi Goka, and Raul Narciso Carvalho Guedes
PLoS ONE, 2014, Volume 9, Number 4, Page e94482
[7]
Christoph Sandrock, Matteo Tanadini, Lorenzo G. Tanadini, Aline Fauser-Misslin, Simon G. Potts, Peter Neumann, and Nicolas Desneux
PLoS ONE, 2014, Volume 9, Number 8, Page e103592
[8]
Marek Łukasz Roszko, Marta Kamińska, Krystyna Szymczyk, Renata Jędrzejczak, and Nicolas Desneux
PLOS ONE, 2016, Volume 11, Number 12, Page e0167487
[9]
Douglas B. Sponsler and Reed M. Johnson
Environmental Toxicology and Chemistry, 2017, Volume 36, Number 4, Page 871
[10]
Elizabeth E. W. Samuelson, Zachary P. Chen-Wishart, Richard J. Gill, and Ellouise Leadbeater
Scientific Reports, 2016, Volume 6, Number 1
[13]
Andrzej Ciereszko, Jerzy Wilde, Grzegorz J. Dietrich, Maciej Siuda, Beata Bąk, Sylwia Judycka, and Halina Karol
Apidologie, 2017, Volume 48, Number 2, Page 211
[14]
Helen Thompson, Mike Coulson, Natalie Ruddle, Selwyn Wilkins, Paul Harrington, and Sarah Harkin
Pest Management Science, 2016, Volume 72, Number 9, Page 1737
[16]
Léa Tison, Marie-Luise Hahn, Sophie Holtz, Alexander Rößner, Uwe Greggers, Gabriela Bischoff, and Randolf Menzel
Environmental Science & Technology, 2016, Volume 50, Number 13, Page 7218
[17]
Elizabeth Y. Long and Christian H. Krupke
Nature Communications, 2016, Volume 7, Page 11629
[18]
Verena Christen, Fabian Mittner, and Karl Fent
Environmental Science & Technology, 2016, Volume 50, Number 7, Page 4071
[19]
Dara A. Stanley, Karen E. Smith, and Nigel E. Raine
Scientific Reports, 2015, Volume 5, Number 1
[20]
Elizabeth Collison, Heather Hird, James Cresswell, and Charles Tyler
Biological Reviews, 2016, Volume 91, Number 4, Page 1006
[21]
Mihail Garbuzov, Margaret J. Couvillon, Roger Schürch, and Francis L.W. Ratnieks
Agriculture, Ecosystems & Environment, 2015, Volume 203, Page 62
[22]
G. Christopher Cutler, Cynthia D. Scott-Dupree, Maryam Sultan, Andrew D. McFarlane, and Larry Brewer
PeerJ, 2014, Volume 2, Page e652
[23]
Sally M. Williamson, Sarah J. Willis, and Geraldine A. Wright
Ecotoxicology, 2014, Volume 23, Number 8, Page 1409
[24]
G. Christopher Cutler, Cynthia D. Scott-Dupree, and David M. Drexler
Pest Management Science, 2014, Volume 70, Number 5, Page 779
[25]
Christoph Sandrock, Lorenzo G. Tanadini, Jeffery S. Pettis, Jacobus C. Biesmeijer, Simon G. Potts, and Peter Neumann
Agricultural and Forest Entomology, 2014, Volume 16, Number 2, Page 119
[26]
Aline Fauser-Misslin, Ben M. Sadd, Peter Neumann, Christoph Sandrock, and Juliet Osborne
Journal of Applied Ecology, 2014, Volume 51, Number 2, Page 450

Comments (0)

Please log in or register to comment.
Log in