Anderson D. L., Gibson N. L. (1998) New species and isolate of sporecysts fungi (Plectomycetes: Ascosphaerales) from Australia. Australian Systematic Botany 11: 53-72.CrossrefGoogle Scholar
Aronstein K. A., Murray K. D. (2010) Chalkbrood disease in honey bees. Journal of Invertebrate Pathology 103: 520-529.Web of ScienceGoogle Scholar
Aronstein K. A., Murray K. D., de Leon J., Qin X., Weinstock G. (2007) High mobility group (HMG-box) genes in the honey bee fungal pathogen Ascosphaera apis. Mycologia 99 (4): 553-561.CrossrefWeb of ScienceGoogle Scholar
Azambuja P., Garcia E. S., Ratcliffe N. A. (2005) Gut microbiota and parasite transmission by insect vectors. Trends in Parasitology 21: 568-572.PubMedCrossrefGoogle Scholar
Bailey L., Ball B. V. (1991) Honey Bee Pathology. Academic Press London, UK. 193 pp.Google Scholar
Bissett J. D., Duke G. M., Goettel M. S. (1996) Ascosphaera acerosa sp. nov. isolated from the alfalfa leaf cutting bee, with a key to the species of Ascosphaera. Mycologia 88: 797-803.CrossrefGoogle Scholar
Breed R. S., Murray E. G. D., Smith N. R. (1957) Bergey’s Manual of Determinative Bacteriology. Williams Wilkins Company. Baltimore, Maryland. 1094 pp.Google Scholar
Chen Y., Evans J. D., Smith I. B., Pettis J. S. (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. Journal of Invertebrate Pathology 97: 186-188.CrossrefPubMedWeb of ScienceGoogle Scholar
Chorbiński P. (2003) Wrażliwość szczepów Ascosphaera apis na preparaty przeciwgrzybicze. Medycyna Weterynaryjna 59 (12): 1137-1139.Google Scholar
Cox-Foster D. L., Conlan S., Holmes E. C., Palacios G., Evans J. D., Moran N. A., Quan P. L., Briese T., Hornig M., Geiser D. M., Martinson V., Van-Engelsdorp D., Kalkstein A. L., Drysdale A., Hui J., Zhai J., Cui L., Hutchinson S. K., Simons J. F., Egolm M., Pettis J. S., Lipkin W. I. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283-287.Web of ScienceGoogle Scholar
Davis C., Ward W. (2003) Control of chalkbrood disease with natural products: a report for the RIRDC. Publication No. 03/107. Kingston, ACT, AU. 23 pp.Google Scholar
Evans J. D., Armstrong T. N. (2006) Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecology 6: 4-12.CrossrefPubMedGoogle Scholar
Evans J. D., Lopez D. L. (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). Journal of Economic Entomology 97: 752-756.CrossrefPubMedGoogle Scholar
Flores J., Spivak M., Gutierrez I. (2005) Spores of Ascosphaera apis contained in wax foundation can infect honey bee brood. Veterinary Microbiology 108: 141-144.CrossrefGoogle Scholar
Foldes T., Banhegyi I., Herpai Z., Varga L., Szigeti J. (2000) Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food-borne pathogenic and spoilage micro-organisms. Journal of Applied Microbiology 89: 840-846.CrossrefPubMedGoogle Scholar
Frazier M., Mullin C., Frazier J., Ashcraft S. (2008) What have pesticides got to do with it? American Bee Journal 148: 521-523.Google Scholar
Gallai N., Salles J., Settele J., Vaissière B. E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 68: 810-21.Web of ScienceGoogle Scholar
Gilliam M. (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiology Letters 155: 1-10.Google Scholar
Gliński Z., Chmielewski M. (1996) Imidazole derivatives in control of the honey bee brood mycoses. Pszczelnicze Zeszyty Naukowe 40 (2): 165-173.Google Scholar
Heath L. A. F. (1982) Development of chalk brood in a honey bee colony; chalk brood pathogens: a review. Bee World 63 (3): 119-135.Google Scholar
Hornitzky M. (2001) Literature review of chalkbrood. A report for the RIRDC. Publication No. 01/150. Kingston, ACT, AU. 17pp.Google Scholar
Indiragandhi P., Anandham R., Madhaiyan M., Poonguzhali S., Kim G. H., Saravanan V. S., Sa T. (2007) Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for antagonism towards entomopathogenic fungi and host insect nutrition. Journal of Applied Microbiology 103: 2664-2675.Web of ScienceGoogle Scholar
James R. R., Skinner J. S. (2005) PCR diagnostic methods for Ascosphaera infections in bees. Journal of Invertebrate Pathology 90 (2): 98-103. CrossrefPubMedGoogle Scholar
Jeyaprakash A. M., Hoy A., Allsopp M. H. (2003) Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. Journal of Invertebrate Pathology 84: 96-103.Google Scholar
Kaur R., Macleod J., Foley W., Nayudu M. (2006) Gluconic Acid: An Antifungal Agent Produced by Pseudomonas Species in Biological Control of Take-All. Photochemistry 67(6): 595-604.CrossrefGoogle Scholar
Li J., Zheng Z., Hong S., Qi X., Liang Q. (2012) Isolation and Identification of an Antagonistic Bacterial Strain Against Ascosphaera apis from Honey bee Larvae Infected with Chalkbrood Disease. Scientia Agricultural Sinica (5): 5-20. DOI: CNKI:SUN:ZNYK.0.2012-05-020Google Scholar
Liu T. P. (1991) Ultrastructural changes in the spore and mycelia of Ascosphaera apis after treatment with benomyl (Benlate 50 W). Mycopathologia 116: 23-28.Google Scholar
Mohr K. I., Tebbe C. C. (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology 8: 258-272.PubMedCrossrefGoogle Scholar
Nayudu M., Khan S. (2009) Biological Control of Chalkbrood by Anti-fungal Bacterial Symbionts of Bees. A report for the RIRDC. Publication No. 09/120. Kingston, ACT, AU. 14 pp.Google Scholar
Nelson D. L., Gochnauer T. A. (1982) Field and laboratory studies on chalkbrood disease of honey bees. American Bee Journal 122: 29-34.Google Scholar
Pattabhiramaiah M., Reddy M. S., Brueckner D. (2012) Detection of novel probiotic bacterium Lactobacillus spp. in the workers of Indian honey bee, Apis cerana indica. International Journal of Environmental Science 2(3): 1135-1143.Google Scholar
Romero-Tabarez M., Jansen R., Sylla M., Lünsdorf H., Häussler S., Santosa D. A., Timmis K. N., Molinari G. (2006) 7-Omalonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrobial Agents and Chemotherapy 50: 1701-1709.Google Scholar
Sabaté D. C., Carrillo L., Audisio M. C. (2009) Inhibition of Paenibacillus larvae and Ascophaera apis by Bacillus subtilis isolated from honey bee gut and honey samples. Research in Microbiology 160: 193-199.Web of ScienceGoogle Scholar
Spiltoir C. F. (1955) Life cycle of Ascosphaera apis (Pericystis apis). American Journal of Botany 42: 501-508.Google Scholar
Theantana T., Chantawannakul P. (2008) Protease and ß-N acetylglucosaminidase of honey bee chalkbrood pathogen Ascosphaera apis. Journal of Apicultural Research 47 (1): 68-76. van Engelsdorp D., Meixner M. D. (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology 103: 80-95.Google Scholar
Yoshiyama M., Kimura K. (2009) Bacteria in the gut of Japanese honey bee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology 102: 91-96.CrossrefWeb of ScienceGoogle Scholar
Zaghloul O. A., Mourad A. K, El-Kady M. B., Nemat F. M., Morsy M. E. (2005) Assessment of losses in honey yield due to the chalk brood disease, with reference to the determination of its economic injury levels in Egypt. Communications in Agricultural and Applied Biological Sciences 70(4): 703-714. Google Scholar
Comments (0)