Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

2 Issues per year

IMPACT FACTOR 2016: 0.722
5-year IMPACT FACTOR: 0.944

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.414
Source Normalized Impact per Paper (SNIP) 2016: 0.616

Open Access
See all formats and pricing
More options …

Determination of Antioxidant Capacity, Flavonoids, and Total Phenolic Content in Eucalyptus and Clover Honeys

María C. Ciappini
  • Corresponding author
  • CIDTA - Universidad Tehnológica Nacional – Facultad Regional Rosario – E. Zeballos 1341 – S2000BUN Rosario – Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando S. Stoppani
  • CIDTA - Universidad Tehnológica Nacional – Facultad Regional Rosario – E. Zeballos 1341 – S2000BUN Rosario – Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-27 | DOI: https://doi.org/10.2478/jas-2014-0010


Polyphenolic compounds reportedly produce physiological effects that are beneficial to health. Bee products are particularly rich in polyphenolic compounds. We determined the antioxidant capacity and the phenolic and flavonoid compounds content of 81 samples of honey. We used the Folin-Ciocalteu reagent method to evaluate the total phenolic content. The antioxidant activities were evaluated using in vitro scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH ) and hydroxyl radicals (OH ), Trolox equivalent antioxidant capacity (TEAC ), and ferric-reducing antioxidant capacity (FRAC ). Total phenolic content ranged from 40.3 to 193.0 mg gallic acid equivalents (GAE )/100 g; the flavonoid content varied from 1.4 to 7.5 mg quercetin equivalents (QE)/100 g. Eucalyptus honeys exhibited significantly higher phenolic content and free radical-scavenging activity than clover honey samples (p<0.05 for all). Principal component analysis explained 73% of the differences observed in antiradical activity with respect to floral origin. Total phenolic content may be more useful than the radical-scavenging assay for detecting antioxidant capacity in honey; it also represents the variable that most appropriately discriminated among these honeys.

Keywords: DPPH; ferric-reducing antioxidant capacity; flavonoids in honey; hydroxyl radicals; polyphenols; Trolox equivalent antioxidant capacity


  • Aljadi A. M., Kamaruddin M. Y. (2004) Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry 85: 513-518.Google Scholar

  • Arnao M. B., Cano A., Acosta M. (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry 73: 239-244.Google Scholar

  • Álvarez Suárez J. M., Tulipani S., Romandini S., Bompadre S., Vidal A., Battino S. (2009) Determinación de polifenoles y flavonoides totales en mieles uniflorales de Cuba y de su capacidad antioxidante total. In: Proceedings of III Congreso Cubano de Apicultura. La Habana - Cuba. 9-13 March 2009: 33.Google Scholar

  • Baltrušaitytė V., Venskutonis P. R., Čeksterytė V. (2007) Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chemistry 101: 502-514. DOI: 10.1016/j.foodchem.2006.02.007CrossrefGoogle Scholar

  • Beretta G., Granata P., Ferrero M., Orioli M., Facino R. M. (2005) Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta 533: 185-191.Google Scholar

  • Bertonceij J., Dobersek U., Jamnik M., Golob T. (2007) Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry 105(2): 822-8.CrossrefGoogle Scholar

  • Blasa M., Candiracci M., Accorsi A., Piacentini M. P., Piatti E. (2007) Honey flavonoids as protection agents against oxidative damage to human red blood cells. Food Chemistry 104: 1635-1640.Google Scholar

  • Bogdanov S., Jurendic T., Sieber R., Gallman P. (2008) Honey Nutrition and health: a review. Journal of the American College of Nutrition 27: 677-689.Google Scholar

  • Brand-Williams W., Cuvelier M. E., Berset C. (1995) Use of free radical method to evaluate antioxidant activity. Lebensmittel Food Science and Technology 28: 25-30.Google Scholar

  • Buratti S., Benedetti S., Cosio M. S. (2007) Evaluation of the antioxidant power of honey, propolis and royal jelly by amperometric flow injection analysis. Talanta 71: 1387-1392.Web of ScienceGoogle Scholar

  • CODEX Stan 12 (2001) Codex Stan 12-1981. Adopted in 1981. Revisions 1987 and 2001. 17 pp. Available at: http://teca.fao.org/resource/codex-alimentarius-honeystandard Google Scholar

  • Fagúndez G. A., Caccavari M. A. (2006) Pollen analysis of honeys from the central zone of Argentine province of Entre Ríos. Grana 45: 305-320.Google Scholar

  • Fuenmayor C. A., Garcés L. D., Díaz-Moreno A., Quicazán M. C. (2011) A comparative study of the antioxidant activity of bee pollens from the world. In: Proceedings of 42nd International Apicultural Congress of Apimondia. Buenos Aires - Argentina. 21-25 September 2011: 248.Google Scholar

  • Georgé S., Brat P., Alter P., Amiot M. (2005) Rapid determination of polyphenols and vitamina C in plant-derived products. Journal of Agricultural And Food Chemistry 53: 1370-1373.Google Scholar

  • Gheldof H., Wang X., Engeseth N. J. (2002) Identification and quantification of antioxidant component of honeys from various floral sources. Journal of Agricultural and Food Chemistry 50(21): 5870-5877.CrossrefGoogle Scholar

  • González Lorente M., De Lorenzo Carretero C., Pérez Martin R. A. (2008) Sensory attributes and antioxidant capacity of Spanish Honeys. Journal of Sensory Studies 23: 293-302.Google Scholar

  • Halliwell B., Gutteridge J., Aruoma O. (1987) The desoxyrribosa method: a simple test tube assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry 165: 215-219.Google Scholar

  • Hamdy A. A, Ismail H., AL- Ahwal A., Gomaa N. (2009) Determination of Flavonoids and Phenolic Acid Contents of Clover, Cotton and Citrus Floral Honeys. The Journal of the Egyptian Public Health Association 84(3&4): 245-259.Google Scholar

  • Iurlina M. O., Saiz I. A., Fangio F., Fritz R. (2011) Mieles monoflorales de trébol. Caracterización del potencial antioxidante, contenido de flavonoides y color. In: Proceedings of 42nd International Apicultural Congress of Apimondia. Buenos Aires - Argentina. 21-25 Septembre 2011: 244.Google Scholar

  • Johnson D. E. (2004) Métodos multivariados aplicados al análisis de datos. International Thomson Publishing. Madrid. 566 pp.Google Scholar

  • Kaškonienė V., Maruška A., Kornyšova O., Charczun N., Ligor M., Buszewski B. (2009) Quantitative and qualitative determination of phenolic compounds in honey. Chemical Technology 3(52): 74-80.Google Scholar

  • Liu X., Zhao M., Wang J., Yang B., Jiang Y. (2008) Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. Journal of Food Composition and Analysis 21(3): 219-228.CrossrefWeb of ScienceGoogle Scholar

  • Liviu M., Dezmirean D., Bobis O. (2011) Authenticity study of honey using specific markers for product traceability. In: Proceedings of 42nd International Apicultural Congress of Apimondia. Buenos Aires - Argentina. 21-25 September 2011: 242.Google Scholar

  • Louveaux J., Maurizio A., Vorwohl G. (1978) Methods of Melissopalynology. Bee World 59: 139-157.Google Scholar

  • McKibben, J., Engeseth, N. J. (2002) Honey as a protective agent against lipid oxidation in ground turkey. Journal of Agricultural and Food Chemistry 50(3): 592-595.CrossrefGoogle Scholar

  • Meda A., Lamien C. Romito M., Millongo J. Nacoulma O. (2005) Determination of the total phenolic, flavonoids and proline contents in Burkina Fasan honey, as well as their radical scavening activity. Food Chemistry 91: 571-577.Google Scholar

  • Montenegro G., Santander F., Jara, C., Nuñez G., Fredes C. (2013) Actividad antioxidante y antimicrobiana de mieles monoflorales de plantas nativas chilenas. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 12(3): 257-268.Google Scholar

  • Muñoz O., Copaja S., Speisky H., Peña R., Montenegro G. (2007) Contenido de flavonoides y compuestos fenólicos de mieles chilenas e índice antioxidante. Quimica Nova 30(4): 848-851.CrossrefGoogle Scholar

  • Otilia B., Socaciu C., Mărghitas L., Dezmirean D. (2005) Correlations between total phenols, flavonoids, colour intensity and botanical origin of some honeys from Transilvania region. Bulletin of the University of Agricultural Science and Veterinary Medicine 61: 349-353..Google Scholar

  • Oyaizu M. (1986) Studies on the products of browning reaction prepared from glucosamine. Japan Journal of Nutrition 44: 307-315.Google Scholar

  • Pérez R. A., Iglesias M. T., Pueyo E., González M., de Lorenzo C. (2007) Amino acid composition and antioxidant capacity of Spanish honeys. Journal of Agricultural Food Chemistry 55(2): 360-365.CrossrefGoogle Scholar

  • Prior R. L., Wu X. L., Schaich K. (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry 53(10): 4290-4302.CrossrefGoogle Scholar

  • Rodríguez A., Pérez E., Vit P. (2007) Capacidad antioxidante de mieles venezolanas de los géneros Apis, Melipona y Tetragonisca, evaluados por tres métodos. Revista del Instituto Nacional de Higiene Rafael Rangel 38(2): 30-34.Google Scholar

  • Roginsky V., Lissi E. (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chemistry 92: 235-254.Google Scholar

  • SAS Institute (2011) SAS/OR® 9.3 User’s Guide: Mathematical Programming. SAS Institute, Cary. USA.Google Scholar

  • Singleton V. L., Orthofer R., Lamuela Raventos R. M. (1999) Analysis of total phenol and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymology 299: 152-178.Google Scholar

  • Sosa Martínez R., Tenori Borroto E., Marrero Chang O., Águila Gímenez E., Camacho Bordón S., Morales Montero A. (2009) Determinación de compuestos fenólicos, metales y su efecto sobre el potencial antioxidante y tóxico en mieles procedentes de Apis mellifera. In: Proceedings of III Congreso Cubano de Apicultura. La Habana, Cuba. 9-13 March 2009: 154.Google Scholar

  • Vasco C., Ruales J., Kamal Eldin A. (2008) Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry 111: 816-823.Google Scholar

  • Vela L., de Lorenzo C., Pérez, R. A. (2007) Antioxidant capacity of Spanish honeys and its correlation with some physicochemical parameters and poliphenolic content. Journal of the Science of Food and Agriculture 87: 1069-1075.Web of ScienceGoogle Scholar

  • Vit P., Gutiérrez M. G., Titera D., Vendar M., Rodríguez Malaver A. J. (2008) Mieles checas categorizadas según su actividad antioxidante. Acta de Bioquímica Clínica Latinoamericana 42(2): 237-244.Google Scholar

  • Woisky R., Salatino A. (1998) Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research 37: 99-105.Google Scholar

  • Won Lee K., Jun Kim Y., Joo Lee H., Yong Lee C. (2003) Cocoa has more phenolic phytochemicals and higher antioxidant capacity than teas and red wine. Journal of Agricultural and Food Chemistry 41: 792-795.Google Scholar

  • Wu X., Beecher G. R., Holden J. M., Haytowitz D. B., Gebardt E. S., Prior R. L. (2004) Lypophilic and hydrophilic antioxidant capacity of common foods in the United States. Journal of Agricultural and Food Chemistry 52: 4026-4037. Google Scholar

About the article

Received: 2013-07-25

Accepted: 2014-02-24

Published Online: 2014-05-27

Published in Print: 2014-06-01

Citation Information: Journal of Apicultural Science, Volume 58, Issue 1, Pages 103–111, ISSN (Online) 2299-4831, DOI: https://doi.org/10.2478/jas-2014-0010.

Export Citation

© by María C. Ciappini. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ana Pascual-Maté, Sandra M Osés, Miguel A Fernández-Muiño, and M Teresa Sancho
Journal of Apicultural Research, 2018, Volume 57, Number 1, Page 38

Comments (0)

Please log in or register to comment.
Log in