Jump to ContentJump to Main Navigation
Show Summary Details

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

2 Issues per year


IMPACT FACTOR 2015: 0.571
5-year IMPACT FACTOR: 0.779

SCImago Journal Rank (SJR) 2015: 0.392
Source Normalized Impact per Paper (SNIP) 2015: 0.470
Impact per Publication (IPP) 2015: 0.694

Open Access
Online
ISSN
2299-4831
See all formats and pricing

An Approach for Routine Analytical Detection of Beeswax Adulteration Using FTIR-ATR Spectroscopy

Lidija Svečnjak
  • Corresponding author
  • University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture and Special Zoology, 10000 Zagreb, Croatia
  • Email:
/ Goran Baranović
  • Rudjer Boskovic Institute, Division of Organic Chemistry and Biochemistry (Laboratory of Molecular Spectroscopy), 10000 Zagreb, Croatia
/ Marko Vinceković
  • University of Zagreb Faculty of Agriculture, Department of Chemistry, 10000 Zagreb, Croatia
/ Saša Prđun
  • University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture and Special Zoology, 10000 Zagreb, Croatia
/ Dragan Bubalo
  • University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture and Special Zoology, 10000 Zagreb, Croatia
/ Ivana Tlak Gajger
  • University of Zagreb, Faculty of Veterinary Medicine, Department of Biology and Pathology of Fish and Bees, 10000 Zagreb, Croatia
Published Online: 2015-12-09 | DOI: https://doi.org/10.1515/jas-2015-0018

Abstract

Although beeswax adulteration represents one of the main beeswax quality issues, there are still no internationally standardised analytical methods for routine quality control. The objective of this study was to establish an analytical procedure suitable for routine detection of beeswax adulteration using FTIR-ATR spectroscopy. For the purpose of this study, reference IR spectra of virgin beeswax, paraffin, and their mixtures containing different proportions of paraffin (5 - 95%), were obtained. Mixtures were used for the establishment of calibration curves. To determine the prediction strength of IR spectral data for the share of paraffin in mixtures, the Partial Least Squares Regression method was used. The same procedure was conducted on beeswax-beef tallow mixtures. The model was validated using comb foundation samples of an unknown chemical background which had been collected from the international market (n = 56). Selected physico-chemical parameters were determined for comparison purposes. Results revealed a strong predictive power (R2 = 0.999) of IR spectra for the paraffin and beef tallow share in beeswax. The results also revealed that the majority of the analysed samples (89%) were adulterated with paraffin; only 6 out of 56 (11%) samples were identified as virgin beeswax, 28% of the samples exhibited a higher level of paraffin adulteration (>46% of paraffin), while the majority of the analysed samples (50%) were found to be adulterated with 5 - 20% of paraffin. These results indicate an urgent need for routine beeswax authenticity control. In this study, we demonstrated that the analytical approach defining the standard curves for particular adulteration levels in beeswax, based on chemometric modelling of specific IR spectral region indicative for adulteration, enables reliable determination of the adulterant proportions in beeswax.

Keyword: adulterants share detection; beeswax adulteration; fingerprint region; FTIR-ATR spectroscopy

References

  • Aichholz R., Lorbeer E. (1999) Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography-chemical ionization mass spectrometry I. High-temperature gas chromatography. Journal of Chromatography A 855(2): 601-615. DOI: 10.1016/S0021-9673(99)00725-6 [Crossref]

  • Aichholz R., Lorbeer E. (2000) Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography-chemical ionization mass spectrometry. II: High-temperature gas chromatography-chemical ionization mass spectrometry. Journal of Chromatography A 883(1-2): 75-88. DOI: 10.1016/S0021-9673(00)00386-1 [Crossref]

  • Bernal J. L., Jiménez J. J., del Nozal M. J., Toribio L., Martín M. T. (2005) Physico-chemical parameters for the characterization of pure beeswax and detection of adulterations. European Journal of Lipid Science and Technology 107(3): 158-166. DOI: 10.1002/ejlt.200401105 [Crossref]

  • Berry A. J., Delaplane S. K. (2001) Effects of comb age on honey bee colony growth and brood survivorship. Journal of Apicultural Research 40(1): 3-8. DOI: 10.1002/ ejlt.200401105 [Crossref]

  • Beverly M. B., Kay P. T., Voorhees K. J. (1995) Principal component analysis of the pyrolysis mass spectra from African, Africanized hybrid and European beeswax. Journal of Analytical and Applied Pyrolysis 34(2): 251-263. DOI: 10.1016/0165-2370(95)00891-H [Crossref]

  • Birshtein V. Y, Tul‘chinskii V. M. (1977) Determination of beeswax and some impurities by IR spectroscopy. Chemistry of Natural Compounds 13(2): 232-235. [Crossref]

  • Bogdanov S. (2004a) Beeswax: quality issues today. Bee World 85(3): 46-50.

  • Bogdanov S. (2004b) Quality and standards of pollen and beeswax. Apiacta 38: 334-341.

  • Bogdanov S. (2009) Beeswax: Production, properties, composition and control. Beeswax book. Bee Product Science. 17 pp.

  • Breed M. D., Garry M. F., Pearce A. N., Hibbard B. E., Bjostad L. B., Page R. E. (1995) The role of wax comb in honeybee nestmate recognition. Animal Behaviour 50(2): 489-496. DOI: 10.1006/anbe.1995.0263 [Crossref]

  • Buchwald R., Breed M. D., Bjostad L., Hibbard B. E., Greenberg A. R. (2009) The role of fatty acids in the mechanical properties of beeswax. Apidologie 40(5): 585-594. DOI: 10.1051/apido/2009035 [Web of Science] [Crossref]

  • D’Ettorre P., Wenseleers T., Dawson J., Hutchinson S., Boswell T., Ratnieks F. L. W. (2006) Wax combs mediate nestmate recognition by guard honeybees. Animal Behaviour 71(4): 773-779. DOI: 10.1016/j.anbehav.2005.05.014 [Crossref]

  • DGF-M-V-6 (1957) DGF - Einheitsmethoden - Abteilung M - Wachse. German Standard -Beeswax. 29 pp. Available at: http://www.dgfett.de/methods/inhaltsverzeichnis.pdf

  • Edwards H. G. M., Farwel D. W., Daffner L. (1996) Fouriertransform Raman spectroscopic study of natural waxes and resins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 52(12): 1639-1648. DOI: 10.1016/0584-8539(96)01730-8 [Crossref]

  • Council of Europe (2007) European Pharmacopoeia. 6th Edition. Council of Europe. Strasbourg, Cedex, France. Volume 2. 1085-3308 pp.

  • Fröhlich B., Riederer M., Tautz J. (2000) Comb-wax discrimination by honeybees tested with the proboscis extension reflex. Journal of Experimental Biology 203(10): 1581-1587.

  • Jiménez J. J., Bernal J. L., Aumente S., Toribio L., Bernal J. (2003) Quality assurance of commercial beeswax II. Gas chromatography-electron impact ionization mass spectrometry of alcohols and acids. Journal of Chromatography A 1007(1-2): 101-116. DOI: 10.1016/S0021-9673(03)00962-2 [Crossref]

  • Jiménez J. J., Bernal J. L., del Nozal M. J., Martín M. T., Bernal J. (2006) Sample preparation methods for beeswax characterization by gas chromatography with flame ionization detection. Journal of Chromatography A 1129(2): 262-272. DOI: 10.1016/j.chroma.2006.06.098 [Crossref]

  • Jiménez J. J., Bernal J. L., del Nozal M. J., Martín T., Toribio L. (2009) Identification of adulterants added to beeswax: Estimation of detectable minimum percentages. European Journal of Lipid Science and Technology 111(9): 902-911. DOI: 10.1002/ejlt.200800263 [Web of Science] [Crossref]

  • Jiménez J. J., Bernal J. L., del Nozal M. J., Toribio L., Bernal J. (2007) Detection of beeswax adulterations using concentration guide-values. European Journal of Lipid Science and Technology 109(7): 682-690. DOI: 10.1002/ ejlt.200600308 [Web of Science] [Crossref]

  • Jiménez J. J., Bernal J. L., Aumente S., del Nozal M. J., Martín M. T., Bernal J. (2004) Quality assurance of commercial beeswax. I. Gas chromatography- electron impact ionization mass spectrometry of hydrocarbons and monoesters. Journal of Chromatography A 1024 (1-2): 147-154. DOI: 10.1016/j.chroma.2003.10.063 [Crossref]

  • Maia M., Nunes F. M. (2013) Authentication of beeswax (Apis mellifera) by high-temperature gas chromatography and chemometric analysis. Food Chemistry 136(2): 961-968. DOI: 10.1016/j.foodchem.2012.09.003 [Web of Science] [Crossref]

  • Maia M., Barros A. R. N. A., Nunes F. M. (2013) A novel, direct, reagent-free method for the detection of beeswax adulteration by single-reflection attenuated total reflectance mid-infrared spectroscopy. Talanta 107: 74-80. DOI: 10.1016/j.talanta.2012.09.052 [Web of Science] [Crossref]

  • MatLab 7.11 (2010b) MathWorks Inc.

  • Muscat D., Tobin M. J., Guo Q., Adhikari B. (2014) Understanding the distribution of natural wax in starch-wax films using synchrotron-based FTIR (S-FTIR). Carbohydrate Polymers 102: 125-135. DOI: 10.1016/j.carbpol.2013.11.004 [Crossref] [Web of Science]

  • Semkiw P., Skubida P. (2013) Comb construction and brood development on beeswax foundation adulterated with paraffin. Journal of Apicultural Science 57(1):75-83. DOI: 10.2478/jas-2013-0009 [Web of Science] [Crossref]

  • Serra Bonvehi J. S., Orantes Bermejo F. J. (2012) Detection of adulterated commercial Spanish beeswax. Food Chemistry 132(1): 642-648. DOI: 10.1016/j.foodchem.2011.10.104 [Web of Science] [Crossref]

  • Statistica ver. 7. (2004) StatSoft Inc.

  • Tulloch A. P. (1973) Factors affecting analytical values of beeswax and detection of adulteration. Journal of the American Oil Chemists Society 50(7): 269-272. [Crossref]

  • University of Tartu (Estonia), Institute of Chemistry. Database of ATR-IR spectra of materials related to paints and coatings. Available at: http://tera.chem.ut.ee/IR_spectra/

  • Wallner K. (2005) Foundation causing honeybee brood damage. In: Proceedings of ICPBR 9. International Symposium. York - United Kingdom. 12-14 October 2005: 30.

  • Waś E., Szczęsna T., Rybak-Chmielewska H. (2014) Determination of beeswax hydrocarbons by gas chromatography with a mass detector (GC-MS) technique. Journal of Apicultural Science 58(1): 145-157. DOI: 10.2478/JAS-2014-0015 [Crossref]

  • Winston M. L. (1991) The Biology of the Honey Bee. Harvard University Press. Cambridge. 36 pp.

  • Zimnicka B., Hacura A. (2006) An Investigation of Molecular Structure and Dynamics of Crude Beeswax by Vibrational Spectroscopy. Polish Journal of Environmental Studies 15(4A): 112-114.

About the article

Received: 2014-10-08

Accepted: 2015-07-10

Published Online: 2015-12-09

Published in Print: 2015-12-01


Citation Information: Journal of Apicultural Science, ISSN (Online) 2299-4831, DOI: https://doi.org/10.1515/jas-2015-0018. Export Citation

© by Lidija Svečnjak. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. (CC BY-NC-ND 4.0)

Comments (0)

Please log in or register to comment.
Log in