Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

2 Issues per year


IMPACT FACTOR 2016: 0.722
5-year IMPACT FACTOR: 0.944

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.414
Source Normalized Impact per Paper (SNIP) 2016: 0.616

Open Access
Online
ISSN
2299-4831
See all formats and pricing
More options …

Hygienic Behaviour of Honeybee Colonies with Different Levels of Polyandry and Genotypic Composition

Dariusz Gerula
  • Corresponding author
  • Research Institute of Horticulture, Apiculture Division, Kazimierska 2, 24-100 Puławy, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Węgrzynowicz
  • Research Institute of Horticulture, Apiculture Division, Kazimierska 2, 24-100 Puławy, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beata Panasiuk
  • Research Institute of Horticulture, Apiculture Division, Kazimierska 2, 24-100 Puławy, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Bieńkowska
  • Research Institute of Horticulture, Apiculture Division, Kazimierska 2, 24-100 Puławy, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wojciech Skowronek
  • Research Institute of Horticulture, Apiculture Division, Kazimierska 2, 24-100 Puławy, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-09 | DOI: https://doi.org/10.1515/jas-2015-0020

Abstract

Honey bee queens were inseminated with diluted, homogenised semen collected from a few dozen drones. This procedure was carried out to increase the diversity of the queens’ offspring, which is in comparison to the offspring of queens inseminated with semen from only a few drones coming from one colony. Queens and drones were mated within carniolan bee (Apis mellifera carnica) subspecies, but 3 selected lines were used. Queens were reared from one line and drones from the same line, and two additional lines differing in hygienic behaviour wherein in one of them that trait was strongly evident. The aim of this study was to examine whether the level of enhanced genetic variability in colonies and simultaneously the participation of hygienic bees, would increase the performance of hygienic behaviour. Overall hygienic behaviour of colonies with a lower and greater genetic variability did not differ significantly and amounted to 52.1 and 47.0%, respectively. Colonies within the lower variability group, in which drones from line selected in hygienic behaviour performance were used for inseminating queens, had a significantly greater percent of cleaned pupae than other colonies (63.2%). Hygienic behaviour in other colonies was more dependent on the gene quotas of hygienic bees in the colonies rather than on the level of polyandry.

Keywords: genetic diversity; genotypic variation; hygienic behaviour; instrumental insemination

References

  • Arathi H. S., Spivak M. (2001) Influence of colony genotypic composition on the performance of hygienic behavior in the honey bee (Apis mellifera L.). Animal Behavior 62: 57-66. DOI: 10.1006/anbe.2000.1731CrossrefGoogle Scholar

  • Baer B., Schmid-Hempel P. (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumblebee. Nature 397: 151-154. DOI: 10.1038/16451CrossrefGoogle Scholar

  • Büchler R. (1996) Selektion auf Bruthygene In der Kirchainer Population. Apidologie 27(4): 280. DOI: 10.1051/ apido:19960408CrossrefGoogle Scholar

  • Gary N. E., Page R. E. (1987) Phenotypic variation in susceptibility of honey bees, Apis mellifera, to infestation by tracheal mites, Acarapis woodi. Experimental and Applied Acarology 3: 291-305.CrossrefGoogle Scholar

  • Gilliam M., Taber S., Richardson G. V. (1983) Hygienic behaviour of honey bees in relation to chalkbrood diseases. Apidologie 14(1): 29-39. DOI: 10.1051/apido:19830103CrossrefGoogle Scholar

  • Gilliam M., Taber S., Lorenz B. J., Prest D. B. (1988) Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. Journal of Invertebrate Pathology 52: 314-325.CrossrefGoogle Scholar

  • Guzman L. I., Rinderer T. E., Delatte G. T., Macchiavelli R. E. (1996) Varroa jacobsoni Oudemans tolerance in selected stocks of Apis mellifera L. Apidologie 27(4): 193-210. DOI: 10.1051/apido:19960402CrossrefGoogle Scholar

  • Hamilton W. D. (1987) Kinship, recognition, disease, and intelligence: constraints of social evolution. In: Ito Y., Brown J. L., Kikkawa J. (Eds.) Animal societies: theory and facts. Japanese Scientific Society. Tokyo: 81-102.Google Scholar

  • MultiScanBase v. 18.03. Computer Scanning Systems II. Licence no. 12/10/03/22/34.Google Scholar

  • Olszewski K., Paleolog J. (2007) Study on an easy method of hygienic behaviour evaluation in honey bee. Medycyna Weterynaryjna 63(2): 165-66.Google Scholar

  • Olszewski K., Borsuk G., Paleolog J., Strachecka A. (2013). Validation of the methods of hygienic behaviour evaluation in the honeybee. Medycyna Weterynaryjna 69(12): 749-752.Google Scholar

  • Olszewski K., Borsuk G., Paleolog J., Strachecka A., Bajda M. (2014) Hygienic behavior of colonies kept on small-cell combs. Medycyna Weterynaryjna 70(12): 774-776.Google Scholar

  • Page R. E., Robinson G. E. (1991) The genetics of division of labour in honey bee colonies. Advances in Insect Physiology 23: 117-169.CrossrefGoogle Scholar

  • Page R. E., Robinson G. E., Fondrk M. K., Nasr M. E. (1995) Effects of worker genotypic diversity on honey bee colony development and behavior (Apis mellifera L.). Behavioral Ecology and Sociobiology 36: 387-396.CrossrefGoogle Scholar

  • Panasiuk B., Skowronek W., Gerula D. (2009) Effect of period of the season and environmental conditions on rate of cleaning cells with dead brood. Journal of Apicultural Science 53(1): 95-103.Google Scholar

  • Rothenbuhler W. C. (1964) Behavior genetics of nest cleaning in honey bee IV. Response of F1 and backcross generation to disease-killed brood. American Zoologist 4: 111-123.CrossrefGoogle Scholar

  • Rothenbuhler W. C., Thompson V. C. (1956) Resistance to American foulbrood in honey bees. I. Differential survival of larvae of different genetic lines. Journal of Economic Entomology 49: 470-475.CrossrefGoogle Scholar

  • Ruttner F. (1976) The instrumental insemination of the queen bee. Apimondia Publishing House. Bucharest. 21 pp.Google Scholar

  • Schmid-Hempel P. (1994) Infection and colony variability in social insects. Philosophical Transactions of the Royal Society B: Biological Sciences 346: 313-321.CrossrefGoogle Scholar

  • Schmid-Hempel P. (1998) Parasites in Social Insects. Princeton University Press. Princeton NJ. 392 pp.Google Scholar

  • Seeley T. D, Tarpy D. R. (2007) Queen promiscuity lowers disease within honeybee colonies. Proceedings of the Royal Society of London. Series B: Biological Sciences 274: 67-72. DOI: 10.1098/rspb.2006.3702Web of ScienceCrossrefGoogle Scholar

  • Sherman P. W., Seeley T. D., Reeve H. K. (1988) Parasites, pathogens and polyandry in social Hymenoptera. The American Naturalist 131: 602-610. DOI: 10.1086/284809CrossrefGoogle Scholar

  • Shykoff J. A., Schmid-Hempel P. (1991) Parasites and the advantage of genetic variability within social insect colonies. Proceedings of the Royal Society of London. Series B: Biological Sciences. 243: 55-58.Google Scholar

  • Skowronek W., Kruk C., Loc K. (1995) The insemination of queen honeybees with diluted semen. Apidologie 26: 487-493. DOI: 10.1051/apido:19950605CrossrefGoogle Scholar

  • Spivak M., Reuter G. S. (1998) Performance of hygienic honey bee colonies in a commercial apiary. Apidologie 29(3): 291-302. DOI: 10.1051/apido:19980308CrossrefGoogle Scholar

  • Statistica ver. 9.1 (2009) StatSoft Inc.Google Scholar

  • Tarpy D. R. (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 99-103. DOI: 10.1098/ rspb.2002.2199CrossrefGoogle Scholar

  • Tarpy D. R., Seeley T. D. (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93: 195-199. DOI: 10.1007/s00114-006-0091-4CrossrefGoogle Scholar

  • Woyciechowski M., Król E., Figurny E., Stachowicz M., Tracz M. (1994) Genetic diversity of workers and infection by the parasite Nosema apis in honeybee colonies (Apis melifera). In: Lenoir A., Arnold G., Lepage M. (Eds.) Proceedings of the 12th Congress of the International Union for the Study of Social Insects. Université Paris- Nord. Paris: 347. Google Scholar

About the article

Received: 2015-04-28

Accepted: 2015-08-03

Published Online: 2015-12-09

Published in Print: 2015-12-01


Citation Information: Journal of Apicultural Science, ISSN (Online) 2299-4831, DOI: https://doi.org/10.1515/jas-2015-0020.

Export Citation

© by Dariusz Gerula. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in