Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Apicultural Science

The Journal of Research Institute of Horticulture and Apicultural Research Association

2 Issues per year


IMPACT FACTOR 2016: 0.722
5-year IMPACT FACTOR: 0.944

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.414
Source Normalized Impact per Paper (SNIP) 2016: 0.616

Open Access
Online
ISSN
2299-4831
See all formats and pricing
More options …

Nutritional Effect of Alpha-Linolenic Acid on Honey Bee Colony Development (Apis Mellifera L.)

Lanting Ma
  • College of Animal Science and Technology, Shandong Agricultural University, Daizong Road No.61, Shandong 271000 Tai’ an, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ying Wang
  • College of Animal Science and Technology, Shandong Agricultural University, Daizong Road No.61, Shandong 271000 Tai’ an, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaobo Hang
  • College of Animal Science and Technology, Shandong Agricultural University, Daizong Road No.61, Shandong 271000 Tai’ an, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hongfang Wang
  • College of Animal Science and Technology, Shandong Agricultural University, Daizong Road No.61, Shandong 271000 Tai’ an, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Weiren Yang
  • College of Animal Science and Technology, Shandong Agricultural University, Daizong Road No.61, Shandong 271000 Tai’ an, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Baohua Xu
  • Corresponding author
  • College of Animal Science and Technology, Shandong Agricultural University, Daizong Road No.61, Shandong 271000 Tai’ an, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-09 | DOI: https://doi.org/10.1515/jas-2015-0023

Abstract

Alpha-linolenic acid (ALA), which is an n-3 polyunsaturated fatty acid (PUFA), influences honey bee feed intake and longevity. The objective of this study was to research the effect of six dietary ALA levels on the growth and development of Apis mellifera ligustica colonies. In the early spring, a total of 36 honey bee colonies of equal size and queen quality were randomly allocated into 6 groups. The six groups of honey bees were fed a basal diet with supplementation of ALA levels at 0 (group A), 2 (group B), 4 (group C), 6 (group D), 8 (group E), and 10% (group F). In this study, there were significant effects of pollen substitute ALA levels on the feeding amounts of the bee colony, colony population, sealed brood amount, and weight of newly emerged workers (P<0.05). The workers’ midgut Lipase (LPS) activity of group C was significantly lower than that of the other groups (P<0.01). The worker bees in groups B, C, and D had significantly longer lifespans than those in the other groups (P<0.05). However, when the diets had ALA concentrations of more than 6%, the mortality of the honey bees increased (P<0.01). These results indicate that ALA levels of 2 ~ 4% of the pollen substitute were optimal for maintaining the highest reproductive performance and the digestion and absorption of fatty acids in honey bees during the period of spring multiplication. Additionally, ALA levels of 2 ~ 6% of the pollen substitute, improved worker bee longevity.

Keywords: alpha-linolenic acid; Apis mellifera ligustica; colonies development; digestive enzyme; feeding trial; longevity

References

  • Afik O., Dag A., Kerem Z., Shafir S. (2006) Analyses of avocado (Persea americana) nectar properties and their perception by honey bees (Apis mellifera). Journal of Chemical Ecology 32: 1949-1963.CrossrefGoogle Scholar

  • Barker R. J., Lehner Y. (1972) Free amino-acids in thoraces of flown honey bees, Apis mellifera L. (Hymenoptera- Apidae). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 43: 163-169.CrossrefGoogle Scholar

  • Black J. (2006) Honeybee nutrition: review of research and practices. Rural Industries Research and Development Corporation. Canberra. 271 pp.Google Scholar

  • Cheng Y. H., Liu Y. A., Hu F. L., Zheng H. Q., Jin S.H. (2008) Effect of protein nutritional levels on emergent weight and hypopharyngeal gland development of worker bee. Apiculture of China 59(12): 11-13.Google Scholar

  • DeGrandi-Hoffman G., Wardell G., Ahumada-Segura F., Rinderer T., Danka R., Pettis J. (2008) Comparisons of pollen substitute diets for honey bees: consumption rates by colonies and effects on brood and adult populations. Journal of Apicultural Research 47(4): 265-270.Web of ScienceCrossrefGoogle Scholar

  • De Groot A. P. (1953) Protein and amino acid requirements of the honeybee (Apis mellifica L.). Physiologia Comparata et Oecologia 3: 197-285.Google Scholar

  • Dobson H. E. M. (1988) Survey of pollen and pollenkitt lipids - chemical cues to flower visitors. American Journal of Botany 75(2): 170-182.CrossrefGoogle Scholar

  • Farrar C. L. (1934) Bees must have pollen, Glean. Bee Cult 62: 276-278.Google Scholar

  • Feldlaufer M. L., Knox D. A., Lusby W. R., Shimanuki H. (1983) Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood disease. Apidologie 24: 95-99.CrossrefGoogle Scholar

  • Feng Y. (2002) Animal nutrition. Chinese Agricultural Press. Beijing. 325 pp.Google Scholar

  • Feng Q. Q., Xu B. H., Li C. C., Yang W. R. (2011) Effects of vitamin A on bee population, sealed brood quantity and antioxidant of Apis mellifera ligustica. Journal of Animal Nutrition 23(6): 971-975.Google Scholar

  • Hendriksma H. P., Oxman K. L., Shafir S. (2014) Amino acid and carbohydrate tradeoffs by honey bee nectar foragers and their implications for plant-pollinator interactions. Journal of Insect Physiology 69: 56-64.CrossrefWeb of ScienceGoogle Scholar

  • Herbert E. W., Shimanuki H. (1978a) Chemical composition and nutritive-value of bee-collected and bee-stored pollen. Apidologie 9: 33-40.CrossrefGoogle Scholar

  • Herbert E. W., Shimanuki H. (1978b) Consumption and brood rearing by caged honeybees fed pollen substitutes fortified with various sugars. Journal of Apicultural Research 17: 27-31.Google Scholar

  • Herbert E. W., Svoboda J. A., Thompson M. J., Shimanuki H. (1980) Sterol utilization in honey bees fed a synthetic diet: Effects on brood rearing. Journal of Insect Physiology 26: 287-289.CrossrefGoogle Scholar

  • Hornitzky M. (2003) Fatty acids - an alternative control strategy for honeybee diseases. RIRDC Publication No. 03/028. Rural R&D Corporation. Canberra, Australia. 735-736pp.Google Scholar

  • House H. L. (1961) Insect nutrition. Annals Review. Entomologist 6: 13-26.CrossrefGoogle Scholar

  • Ihle K. E., Baker N. A., Amdam G. V. (2014) Insulin-like peptide response to nutritional input in honey bee workers. Journal of Insect Physiology 69: 49-55.CrossrefGoogle Scholar

  • Jouanin L. (2000) Long-term effects of soybean protease inhibitors on digestive enzymes, survival and learning abilities of honey bees. Entomologia Experimentalis et Applicata 95: 21-29.CrossrefGoogle Scholar

  • Kim Y. S., Smith B. H. (2000) Effect of an amino acid on feeding preferences and learning behavior in the honey bee, Apis mellifera. Journal of Insect Physiology 46: 793-801.CrossrefGoogle Scholar

  • Kinsella J. E. (1991) Advances in food and nutrition research. Vol. 33. Academic Press. London. 101 pp.Google Scholar

  • Li C. C., Xu B. B., Wang Y., Feng Q. Q., Yang W. R. (2012) Effects of dietary crude protein levels on development, antioxidant status, and total midgut protease activity of honey bee (Apis mellifera ligustica). Apidologie 43: 576-586.Web of ScienceCrossrefGoogle Scholar

  • Li J. L., Wang Z., Ding Y. B. (2005) Effect of pollen fed in different way on breeding of colony in spring. Apicultural Science and Technology 3: 2-4.Google Scholar

  • Loidl A., Crailsheim K. (2001) Free fatty acids digested from pollen and triolein in the honeybee (Apis mellifera carnica Pollmann) midgut. Journal of Comparative Physiology B 171: 313-319.Google Scholar

  • Manning R. (2001) Fatty acids in pollen: a review of their importance for honey bees. Bee World 82: 60-75.CrossrefGoogle Scholar

  • Manning R., Rutkay A., Eaton L., Dell B. (2007) Lipidenhanced pollen lipid-reduced flour diets and their effect on the longevity of honey bees (Apis mellifera L.). Australian Journal of Entomology 46: 251-257.CrossrefWeb of ScienceGoogle Scholar

  • Mersmann H. J., Houk J. M., Phinney G., Underwood M. C., Brown L. J. (1973). Lipogenesis by in vitro liver and adipose tissue preparations from neonatal swine. American Journal of Physiology 224(5): 1123-1129.Google Scholar

  • Nation J. L. (2001) Insect physiology and biochemistry. CRC Press. Boca Raton, Florida. 485 pp.Google Scholar

  • Pandey D. K., Tripathi R. N., Tripathi R. D., Dixit S. N. (1983) Fungi toxicology in pollen grains. Grana 22: 31-33.CrossrefGoogle Scholar

  • Paoli P. P., Donley D., Stabler D., Saseendranath A., Nicolson S. W., Simpson S. J., Wright G. A. (2014) Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46: 1449-1458.Web of ScienceCrossrefGoogle Scholar

  • Pernal S. F., Currie R. W. (2000) Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31: 387-409.Google Scholar

  • Pirk C. W. W., Boodhoo C., Human H., Nicolson S. W. (2009) The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 41: 62-72.CrossrefWeb of ScienceGoogle Scholar

  • Ritz B. W., Gardner E. M. (2006) Malnutrition and energy restriction differentially affect viral immunity. Journal of Nutrition 136(5): 1141-1144.Google Scholar

  • Saa-Otero M. P., Díaz-Losada E., Fernández-Gómez E. (2000) Analysis of fatty acids, proteins and ethereal extract in honeybee pollen - considerations of their floral origin. Grana 39: 175-181.CrossrefGoogle Scholar

  • Saffari A. M., Kevan P. G., Atkinson J. L. (2004) A promising pollen substitute for honey bees. American Bee Journal 144(3): 230-231.Google Scholar

  • Sahiler N., Sahin A., Kaya S. (2003) The effect of supplementary feeding on honeybee colony performance. In: The XXXVIIIth International Apicultural Congress of Apimondia. Ljubljana-Slovenia. 24-29 August 2003: 158.Google Scholar

  • SAS Institute, 2003. SAS/STAT User’s Guide: Version 9.1th edn.Google Scholar

  • Schmidt J. O., Thoenes S. C., Levin M. D. (1987) Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Annals of the Entomological Society of America 80(2): 176-183.CrossrefGoogle Scholar

  • Seeley T. D., Visscher P. (1985) Survival of honeybee in cold climates: the critical timing of colony growth and reproduction. Ecological Entomology 10(1): 81-88.CrossrefGoogle Scholar

  • Somerville, D. (2000). Honey bee nutrition and supplementary feeding. Agnote DAI/178. NSW Agriculture: 1034-6848.Google Scholar

  • Standifer L. N. (1980) Honey bee nutrition and supplemental feeding. Agriculture Handbook Number 335: 39-45. Available at: http://www.beesource.com/resources/usda/honey-bee-nutrition-and-supplementalfeeding/ Google Scholar

  • Steen J. J. M. (2007) Effect of homemade pollen substitute on honey bee colony development. .Journal of Apicultural Research 46: 114-119.CrossrefGoogle Scholar

  • Sudd, J. H. (1985). Anatomy of the honey bee, by R. E. Snodgrass. Cornell University Press Paperbacks. Physiological Entomology 10(2): 241-241.CrossrefGoogle Scholar

  • Wang Y., Ma L. T., Xu B. H. (2011) Necessity and strategy for studying the nutrient requirements of honeybee. Chinese Journal of Animal Nutrition 23(8): 1269-1272.Google Scholar

  • Weiner C. N., Hilpert A., Werner M., Linsenmair K. E., Bluthgen N. (2010) Pollen amino acids and flower specialisation in solitary bees. Apidologie 41: 476-487 CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-02-01

Accepted: 2015-11-09

Published Online: 2015-12-09

Published in Print: 2015-12-01


Citation Information: Journal of Apicultural Science, ISSN (Online) 2299-4831, DOI: https://doi.org/10.1515/jas-2015-0023.

Export Citation

© by Baohua Xu. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in