Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Benefit-Cost Analysis

More options …

Integrated assessment of climate change: state of the literature

John Weyant
  • Corresponding author
  • Department of Management Science and Engineering, Room 260, Huang Engineering Center, Stanford University, Stanford, CA 94305-4026, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-13 | DOI: https://doi.org/10.1515/jbca-2014-9002

Abstract

This paper reviews applications of benefit-cost analysis (BCA) in climate policy assessment at the US national and global scales. Two different but related major application types are addressed. First there are global-scale analyses that focus on calculating optimal global carbon emissions trajectories and carbon prices that maximize global welfare. The second application is the use of the same tools to compute the social cost of carbon (SCC) for use in US regulatory processes. The SCC is defined as the climate damages attributable to an increase of one metric ton of carbon dioxide emissions above a baseline emissions trajectory that assumes no new climate policies. The paper describes the three main quantitative models that have been used in the optimal carbon policy and SCC calculations and then summarizes the range of results that have been produced using them. The results span an extremely broad range (up to an order of magnitude) across modeling platforms as well as across the plausible ranges of input assumptions to a single model. This broad range of results sets the stage for a discussion of the five key challenges that face BCA practitioners participating in the national and global climate change policy analysis arenas: (1) including the possibility of catastrophic outcomes; (2) factoring in equity and income distribution considerations; (3) addressing intertemporal discounting and intergenerational equity; (4) projecting baseline demographics, technological change, and policies inside and outside the energy sector; and (5) characterizing the full set of uncertainties to be dealt with and designing a decision-making process that updates and adapts new scientific and economic information into that process in a timely and productive manner. The paper closes by describing how the BCA models have been useful in climate policy discussions to date despite the uncertainties that pervade the results that have been produced.

Keywords: benefit-cost analysis; climate change; integrated assessment; optimal carbon emissions; social cost of carbon

References

  • Ackerman, F., & Stanton, E. A. (2010). The social cost of carbon: A report for the economics for equity and the environment network. Sommerville, MA: Stockholm Environment Institute – U.S. Center. Retrieved from http://www.climate-economics.org/papers/SocialCostOfCarbon_SEI_20100401.pdf.

  • Ackerman, F., & Stanton, E. (2012). Climate risks and carbon prices: Revising the social cost of carbon. Economics: The Open-Access, Open-Assessment E-Journal, 6 (2012-10), 1–25. Retrieved from http://dx.doi.org/10.5018/economics-ejournal.ja.2012-10.Crossref

  • Adler, M. (2012). Well-being and fair distribution: Beyond cost-benefit analysis. New York, NY: Oxford University Press.Google Scholar

  • Anthoff, D., & Tol, R. S. J. (2010). On international equity weights and national decision making on climate change. Journal of Environmental Economics and Management, 60(1), 14–20.CrossrefGoogle Scholar

  • Anthoff, D., & Tol, R. S. J. (2013). The uncertainty about the social cost of carbon: A decomposition analysis using FUND. Climatic Change, 117(3), 515–530.CrossrefGoogle Scholar

  • Arrow, K. J., Cline, W. R., Maler, K.-G., Munasinghe, M., Squitieri, R., & Stiglitz, J. E. (1995). Intertemporal equity, discounting, and economic efficiency. In J. Bruce, H. Lee & E. Haites (Eds.), Climate Change 1995: Economic and social dimensions of climate change, contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change (pp. 125–144). Cambridge, UK: Cambridge University Press. Retrieved from http://www.econ.yale.edu/~nordhaus/Resources/22073-Chap4-Intertemporal%20Equity.pdf.

  • Arrow, K., Cropper, M., Gollier, C, Groom, B., Heal, G., Newell, R., … Weitzman, M. (2013). Determining benefits and costs for future generations. Science, 341, 349–350.Google Scholar

  • Browne, E. A. (1996). Modeling expert dependency in decision analysis. Ph.D. Dissertation, Department of Engineering Economic Systems, Stanford University.Google Scholar

  • Cass, D. (1965). Optimum growth in an aggregative model of capital accumulation. Review of Economic Studies, 32(3), 233–240.CrossrefGoogle Scholar

  • Clemen, R. (1984). Modeling dependent information: A Bayesian approach. Ph.D. Dissertation, Indiana University.Google Scholar

  • Clemen, R. (1985). Extraneous expert information. Journal of Forecasting, 4(4), 329–348.CrossrefGoogle Scholar

  • Clemen, R. (1986). Calibration and the aggregation of probabilities. Management Science, 32(3), 312–314.CrossrefGoogle Scholar

  • Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–583.CrossrefGoogle Scholar

  • Clemen, R., & Winkler, R. (1985). Limits for the precision and value of information from dependent sources. Operations Research, 33(2), 427–442. doi:10.1287/opre.33.2.427.CrossrefGoogle Scholar

  • Clemen, R., & Winkler, R. (1986). Combining economic forecasts. Journal of Business & Economic Statistics, 4(1), 39. doi:10.2307/1391385.CrossrefGoogle Scholar

  • Clemen, R., & Winkler, R. (1987). Calibrating and combining precipitation probability forecasts. Probability and Bayesian Statistics, 97–110. New York: Plenum.Google Scholar

  • Clemen, R., & Winkler, R. L. (1992). Sensitivity of weights in combining forecasts. Operations Research, 40(3), 609–614.Google Scholar

  • Clemen, R., & Winkler, R. (1993). Aggregating point estimates: A flexible modeling approach. Management Science, 39(4), Sol–SIS.CrossrefGoogle Scholar

  • Cline, W. (1992). The economics of global warming. Washington, D.C.: Institute of International Economics.Google Scholar

  • Domike, J., & Zacoroli, A. (Eds.). (2013). The Clean Air Act handbook(3rd ed.). Chicago: American Bar Association.Google Scholar

  • Gayer, T., & Viscusi, W. (2014). Determining the proper scope of climate change benefits. Working Paper, Brookings Institution.Google Scholar

  • Greenstone, M., Kopits, E., & Wolverton, A. (2011). Estimating the social cost of carbon for use in U.S. federal rulemakings: A summary and interpretation. NBER Working Paper 16913.Google Scholar

  • Greenstone, M., Kopits, E., & Wolverton, A. (2013). Developing a social cost of carbon for US regulatory analysis: A methodology and interpretation. Review of Environmental Economics and Policy, 7(1), 23–46.Google Scholar

  • Hope, C. (2006). The marginal impact of CO2 from PAGE2002: An integrated assessment model incorporating the IPCC’s five reasons for concern. Integrated Assessment Journal, 6(1), 19–56.Google Scholar

  • Hope, C. (2011). The social cost of CO2 from the PAGE09 model. Cambridge, UK: Judge Business School Working Paper.Google Scholar

  • Howard, R. A. (1984). Risk preference (paper 34). In: R. A. Howard & J. E. Matheson (Eds.), The principles and applications of decision analysis (Vol. II). Menlo Park, CA: Strategic Decisions Group.Google Scholar

  • Integrated Assessment Modeling Consortium (IAMC). 2014. Last accessed November 6, 2014 @ http://www.globalchange.umd.edu/iamc/.

  • Interagency Working Group (IWG). (2010). Technical support document: Social cost of carbon for regulatory impact analysis under Executive Order 12866 (p. 51). Washington, DC: Interagency Working Group on Social Cost of Carbon, United States Government. Retrieved from http://www.epa.gov/oms/climate/regulations/scc-tsd.pdf.

  • Interagency Working Group (IWG). (2013). Technical support document: Technical update of the social cost of carbon for regulatory impact analysis under Executive Order 12866 (p. 21). Washington, DC: Interagency Working Group on Social Cost of Carbon, United States Government. Retrieved from http://www.whitehouse.gov/sites/default/files/omb/inforeg/social_cost_of_carbon_for_ria_2013_update.pdf.

  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, … P. M. Midgley (Eds.), A special report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York, NY: Cambridge University Press.Google Scholar

  • IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Contribution of Working Group I to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Cambridge, UK and New York, NY: Cambridge University Press. Retrieved from http://www.ipcc.ch/report/ar5/wg1/#.Ukn99hCBm71.

  • IPCC. (2014a). Climate change 2014: Impacts, adaptation, and vulnerability. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, … L. L. White (Eds.), Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar

  • IPCC. (2014b). Climate change 2014: Mitigation of climate change. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, … J. C. Minx (Eds.), Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar

  • Johnson, L., & Hope, C. (2012). The social cost of carbon in U.S. regulatory impact analyses: An introduction and critique. Journal of Environmental Studies and Sciences, 2(3), 205–221.Google Scholar

  • Jouini, M. (1992). Combining experts’ opinions: A nonparametric approach using copulas. Ph.D. Dissertation, Dept. of Decision Sciences, University of Oregon.Google Scholar

  • Jouini, M., & Clemen, R. (1994). Copula models for aggregating expert opinions. Working Paper, College of Business Administration, University of Oregon.Google Scholar

  • Koopmans, T. C. (1965). On the concept of optimal economic growth. Academiae Scientiarum Scripta Varia, 28(1), 1–75.Google Scholar

  • Lempert, R. J. (2014). Embedding (some) benefit-cost concepts into decision support processes with deep uncertainty. The Journal of Benefit-Cost Analysis, 5(3), 487–514.Google Scholar

  • Lenton, T., Held, H., Kriegler, E., Hall, J.,.Lucht, W., Rahmstorf, S., & Schellenhuber, J. (2008). Tipping elements in the Earth’s climate system. Nature, 105(6), 1786–1793.Google Scholar

  • Li, J., Mullan, M., & Helgeson J.r. (2014). Improving the practice of economic analysis of climate change adaptation. The Journal of Benefit-Cost Analysis, 5(3), 445–467.Google Scholar

  • Lind, R. (1995). Intergenerational equity, discounting, and the role of cost benefit analysis in evaluating global climate policy. Energy Policy 23, 379–389.CrossrefGoogle Scholar

  • Lind, R., Ruskin, F. (Ends). (1982). Discounting for time and risk in energy policy. Washington, DC.: Resources for the Future.Google Scholar

  • Marten, A., & Newbold, S. (2012). Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide. Energy Policy, 5, 957–972.CrossrefGoogle Scholar

  • Masters, G., & Ela, W. (2007). Introduction to environmental engineering and science (3rd Edition). New York, NY: Prentice Hall.Google Scholar

  • Meinshausen, M., Raper, S. C. B., & Wigley, T. M. L. (2011). Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration. Atmospheric Chemistry and Physics, 11(4), 1417–1456. doi:10.5194/acp-11-1417-2011.CrossrefGoogle Scholar

  • Morgan, G., & Keith, D. (1995). Subjective judgments by climate experts. Environmental Science & Technology, 29, A468–A476.Google Scholar

  • Morin, J., & Orsini, A. (Eds.) (2015). The essential guide to global environmental governance. New York, NY: Routledge.Google Scholar

  • Morris, P. A. (1971). Bayesian expert resolution. Ph.D. Dissertation, Dept. of Engineering-Economic Systems, Stanford University.Google Scholar

  • Morris, P. A. (1974). Decision analysis expert use. Management Science, 20(9), 1233–1241.CrossrefGoogle Scholar

  • Morris, P. A. (1977). Combining expert judgments: A bayesian approach. Management Science, 23(7), 679–693.CrossrefGoogle Scholar

  • Morris, P. (1983). An axiomatic approach to expert resolution. Management Science, 29(1), 24–32.CrossrefGoogle Scholar

  • Morris, P. (1986). Observations of expert aggregation. Management Science, 32(3), 321–328.CrossrefGoogle Scholar

  • National Research Council, Committee on Abrupt Climate Change. (2002). Abrupt climate change: Inevitable surprises. Washington, DC: National Academy Press.Google Scholar

  • Neumann, J. E., & Strzepek, K. (2014). State of the literature on the economic impacts of climate change in the United States. The Journal of Benefit-Cost Analysis, 5(3), 411–443.Google Scholar

  • Nordhaus, W. D. (1992). An optimal transition path for controlling greenhouse gases. Science, 258(5086), 1315–1319.CrossrefPubMedGoogle Scholar

  • Nordhaus, W. D. (1994a). Managing the global commons: the economics of climate change. Cambridge, MA: MIT Press.Google Scholar

  • Nordhaus, W. D. (1994b). Expert opinion on climatic change. American Scientist, 82, 45–51.Google Scholar

  • Nordhaus, W. D. (2007). A review of the stern review on the economics of climate change. Journal of Economic Literature 45(3), 686–702.CrossrefGoogle Scholar

  • Nordhaus, W. D. (2008). A question of balance: Weighing the options on global warming policies. New Haven, CT: Yale University Press.Google Scholar

  • Nordhaus, W. D. (2010). Economic aspects of global warming in a post-Copenhagen environment. Proceedings of the U.S. National Academy of Sciences, 107(26), 11721–11726.Google Scholar

  • Nordhaus, W. D. (2013). Integrated economic and climate modeling. In P. B. Dixon & D. W. Jorgenson (Eds.), Handbook of Computable General Equilibrium Modeling. Amsterdam, The Netherlands: North Holland.Google Scholar

  • Nordhaus, W. D. (2014). Estimates of the social cost of carbon: concepts and results from the DICE-2013R model and alternative approaches. Journal of the Association of Environmental and Resource Economists, 1(1/2), 273–312.Google Scholar

  • Nordhaus, W., & Yang, Z. (1996). A regional dynamic general-equilibrium model of alternative climate-change strategies. American Economic Review, 86(4), 741–765.Google Scholar

  • Nordhaus, W., & Boyer, J. (2000). Warming the world: Economic modeling of global warming. Cambridge, MA: MIT Press.Google Scholar

  • Nordhaus, W., & Sztorc, P. (2013). DICE 2013R: Introduction and user’s manual. Retrieved from http://www.econ.yale.edu/~nordhaus/homepage/ documents/DICE_Manual_100413r1.pdf.

  • OMB. (2003). Office of Management and Budget. Circular A-4. Retrieved from http://www.whitehouse.gov/omb/circulars_a004_a-4.

  • Pindyck, R. (2013). Climate change policy: What do the models tell us? Journal of Economic Literature, 51(3), 860–872.CrossrefGoogle Scholar

  • Portney, P., & Weyant, J. (Eds.). (1999). Discounting and intergenerational equity. Washington, DC: Resources for the Future Press.Google Scholar

  • Pratt, J., Raiffa, H., & Schlaifer, R. (1995). Introduction to statistical decision theory. Cambridge, MA: Washington, DC.Google Scholar

  • Raiffa, H. (1968). DECISION ANALYSIS: Introductory Lectures on Choices under Uncertainty. New York, NY: Addison-Wesley.Google Scholar

  • Ramsey, F. (1928). A mathematical theory of saving. Economic Journal, 38, 543–559.CrossrefGoogle Scholar

  • Reagan, R. (1981). Federal regulation. Presidential Executive Order 12291. Signed: February 17, Federal Register page and date: 46 FR 13193; February 19.Google Scholar

  • Rose, S., Turner, D., Blanford, G., Bistline, J., de la Chesnaye, F., & Wilson, T. (2014). Understanding the social cost of carbon: A technical assessment. Palo Alto, CA: Electric Power Research Institute, Report #3002004657.Google Scholar

  • Schaeffer, M., Gohar, L., Kriegler, E., Lowe, J., Riahi, K., & van Vuuren, D. (2013). Mid- and long-term climate projections for fragmented and delayed-action scenarios. Technological Forecasting and Social Change. doi:10.1016/j.techfore.2013.09.013.CrossrefGoogle Scholar

  • Stern, N. (2007). The economics of climate change: The Stern review. Cambridge, UK: Cambridge University Press.Google Scholar

  • Stern, N. (2008). The economics of climate change. American Economic Review, 98(2), 1–37.CrossrefGoogle Scholar

  • Stern, N. (2013). The structure of economic modeling of the potential impacts of climate change: Grafting gross underestimation of risk onto already narrow science models. Journal of Economic Literature, 51(3), 838–859.CrossrefGoogle Scholar

  • Tol, R. (2008). The social cost of carbon: Trends, outliers and catastrophes, economics. The Open-Access, Open-Assessment E-Journal, 2(25), 1–22.Google Scholar

  • Tol, R. (2009). The economic impact of climate change. Journal of Economic Perspectives, 23(2), 29–51.CrossrefGoogle Scholar

  • Toman, M. (2014). The need for multiple types of information to inform climate change assessment. The Journal of Benefit-Cost Analysis, 5(3), 469–485.Google Scholar

  • van Vuuren, D., Lowe, J., Stehfest, E., Gohar, L. Hof, A., Hope, C., … Plattner, G. K. (2011). How well do integrated assessment models simulate climate change? Climatic Change, 104(2011), 255–285.CrossrefGoogle Scholar

  • Washington, W. & Parkinson, C. (2005). An introduction to three-dimensional climate modeling (2nd ed.). Sausalito, CA: University Scientific Books.Google Scholar

  • Weitzman, M. (2009). On modeling and interpreting the economics of catastrophic climate change. The Review of Economics and Statistics, 91(1), 1–19.CrossrefGoogle Scholar

  • Weitzman, M. (2013). Tail-hedge discounting and the social cost of carbon. Journal of Economic Literature, 51(3), 873–882.CrossrefGoogle Scholar

  • Weyant, J. (2001). Economic models: How they work and why their results differ. In E. Claussen (Ed.), Climate Change: Science, Strategies and Solutions. The Pew Center on Global Climate Change. Boston, MA: Brill Academic Publishers Inc.Google Scholar

  • Wolverton, A., Kopits, E., Moore, C., Marten, A., Newbold. S., & Griffiths, C. (2012). The social cost of carbon: Valuing carbon reductions in policy analysis. In I. Parry, M. Keen, R. de Mooij (Eds.), Fiscal policy to mitigate climate change: A guide for policymakers. Washington, DC: International Monetary Fund.Google Scholar

  • Zhimin, L., & Nordhaus, W. (2013). The social cost of carbon: Methods and a survey of estimates. Berkeley, CA: University of California.Google Scholar

About the article

Corresponding author: John Weyant, Department of Management Science and Engineering, Room 260, Huang Engineering Center, Stanford University, Stanford, CA 94305-4026, USA, Phone: +1 650 723 0645, Fax: +1 650 723 3506, e-mail:


Published Online: 2015-01-13

Published in Print: 2014-12-01


Citation Information: Journal of Benefit-Cost Analysis, Volume 5, Issue 3, Pages 377–409, ISSN (Online) 2152-2812, ISSN (Print) 2194-5888, DOI: https://doi.org/10.1515/jbca-2014-9002.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Daniel Huppmann, Matthew Gidden, Oliver Fricko, Peter Kolp, Clara Orthofer, Michael Pimmer, Adriano Vinca, Alessio Mastrucci, Keywan Riahi, and Volker Krey
Environmental Modelling & Software, 2018
[2]
Wolfram Barfuss, Jonathan F. Donges, Steven J. Lade, and Jürgen Kurths
Nature Communications, 2018, Volume 9, Number 1
[3]
Galen Barbose, Ryan Wiser, Jenny Heeter, Trieu Mai, Lori Bird, Mark Bolinger, Alberta Carpenter, Garvin Heath, David Keyser, Jordan Macknick, Andrew Mills, and Dev Millstein
Energy Policy, 2016, Volume 96, Page 645
[4]
Marisa Beck and Tobias Krueger
Wiley Interdisciplinary Reviews: Climate Change, 2016, Volume 7, Number 5, Page 627
[5]
Fran Sussman, Christopher P. Weaver, and Anne Grambsch
Journal of Benefit-Cost Analysis, 2014, Volume 5, Number 03, Page 347

Comments (0)

Please log in or register to comment.
Log in