Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Benefit-Cost Analysis

More options …

Embedding (some) benefit-cost concepts into decision support processes with deep uncertainty

Robert J. Lempert
Published Online: 2015-01-13 | DOI: https://doi.org/10.1515/jbca-2014-9006

Abstract

Benefit-cost analysis (BCA) aims to help people make better decisions. But BCA does not always serve this role as well as intended. In particular, BCA’s aim of aggregating all attributes of concern to decision makers into a single, best-estimate metric can conflict with the differing world views and values that may be an inherent characteristic of many climate-related decisions. This paper argues that new approaches exist that can help reduce the tension between the benefits of providing useful, scientifically based information to decision makers and the costs of aggregating uncertainty and differing values into single best estimates. Enabled by new information technology, these approaches can summarize decision-relevant information in new ways. Viewed in this light, many limitations of BCA lie not in the approach itself, but with the way it is used. In particular, this paper will argue that the problem lies in a process that begins by first assigning agreed-upon values to all the relevant inputs and then using BCA to rank the desirability of alternative decision options. In contrast, BCA can be used as part of a process that begins by acknowledging a wide range of ethical and epistemological views, examines which combinations of views are most important in affecting the ranking among proposed decision options, and uses this information to identify and seek consensus on actions that are robust over a wide range of such views.

Keywords: deep uncertainty; multi-attribute decision making; resilient infrastructure; robust decision making; sea level rise

References

  • Alley, R. B., Clark, P. U., Huybrechts, P., & Joughin, I. (2005). Ice-sheet and sea-level changes. Science, 310(5747), 456–460.Google Scholar

  • Bankes, S. C. (1993). Exploratory modeling for policy analysis. Operations Research, 41(3), 435–449.CrossrefGoogle Scholar

  • Bromirski, P. D., Flick, R. E., & Cayan, D. R. (2003). Storminess variability along the California coast: 1858–2000. Journal of Climate, 16(6), 982–993.CrossrefGoogle Scholar

  • Brown, C. (2010). The end of reliability. Journal of Water Resources Planning and Management, 136(2), 143–145.Google Scholar

  • Brown, C., & Wilby, R. (2012). An alternate approach to assessing climate risks. Eos, Transations American Geophysical Union, 93(41), 401.Google Scholar

  • Brown, C., Werick, W., Leger, W., & Fay, D. (2011). A decision analytic approach to managing climate risks – Application to the Upper Great Lakes. Journal of the American Water Resources Association 47(3), 524–534.CrossrefGoogle Scholar

  • Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the box: A participatory, computer-assisted approach to scenario discovery. Technological Forecasting and Social Change, 77, 34–49.CrossrefGoogle Scholar

  • Budescu, D. V., Lempert, R., Broomell, S., & Keller, K. (2013). Aided and unaided decisions with imprecise probabilities. European Journal of Operational Research, 2(1–2), 31–62.Google Scholar

  • Carter, T. R., Jones, R. N., Lu, S. B. X., Conde, C., Mearns, L. O., O’Neill, B. C., … Zurek M. B. (2007). New Assessment Methods and the Characterisation of Future Conditions. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. v. d. Linden and C. E. Hanson (Eds.). Cambridge, UK: Cambridge University Press, 1, 33–171.Google Scholar

  • Cayan, D. R., Bromirski, P. D., Hayhoe, K., Tyree, M., Dettinger, M. D., & Flick, R. E. (2008). Climate change projections of sea level extremes along the California coast. Climatic Change, 87(1), 57–73.CrossrefGoogle Scholar

  • CO-CAT. (2010). “State of California Sea-Level Rise Interim Report.” Retrieved December 11, 2014, from http://www.opc.ca.gov/webmaster/ftp/project_pages/Climate/SLR_Guidance_Document.pdf.

  • Collins, M. (2007). Ensembles and probabilities: A new era in the prediction of climate change. Philosophical Transactions of the Royal Society A, 365, 1957–1970.Google Scholar

  • Cox, J., Louis Anthony (Tony). (2012). Confronting deep uncertainties in risk assessment. Risk Analysis, 32(10), 1607–1629.CrossrefGoogle Scholar

  • Dalal, S., Han, B., Lempert, R. J., Jaycocks, A., & Hackbarth, A. (2013). Improving scenario discovery using orthogonol rotations. Environmental Modeling and Software, 48, 1–16.Google Scholar

  • Dessai, S., & Hulme, M. (2007). Assessing the robustness of adaptation decisions to climate change uncertainties: A case study on water resources management in the east of England. Global Environmental Change, 17(1), 59–72.Google Scholar

  • Fischbach, J. R., Johnson, D. R., Ortiz, D. S., Bryant, B. P., Hoover, M., & Ostwald, J. (2012). Coastal Louisiana risk assessment model. Santa Monica, CA: RAND Gulf States Policy Institute.Google Scholar

  • Groves, D. G., & Lempert, R. J. (2007). A New Analytic Method for Finding Policy-Relevant Scenarios. Global Environmental Change, 17, 73–85.Google Scholar

  • Groves, D. G., Sharon, C., & Knopman, D. (2012). Planning tool to support Louisiana’s decisionmaking on coastal protection and restoration. Santa Monica, CA: RAND Gulf States Policy Institute.Google Scholar

  • Groves, D. G., Fischbach, J. R., Bloom, E., Knopman, D., & Keefe, R. (2013). Adapting to a changing Colorado River: Making future water deliveries more reliable through robust management strategies. Santa Monica, CA: RAND Corporation.Google Scholar

  • Haasnoot, M., Kwakkel, J. H., Walker, W. E., & ter Maat, J. (2013). Dynamic adaptive policy pathways: A new method for crafting robust decisions for a deeply uncertain world. Global Environmental Change, 23(2), 485–498.Google Scholar

  • Hall, J. M., Lempert, R., Keller, K., Hackbarth, A., Mijere, C., & McInerney, D. (2012). Robust climate policies under uncertainty: A comparison of Info-Gap and RDM methods. Risk Analysis, 32(10), 1657–1672.CrossrefGoogle Scholar

  • Hallegatte, S., Shah, A., Lempert, R. J., Brown, C., & Gill, S. (2012). Investment decision making under deep uncertainty: Application to climate change. Washington, DC: World Bank.Google Scholar

  • Hosking, J. R. M. (1990). L-moments – Analysis and estimation of distribution using linear- combinations of order statistics. Journal of the Royal Statistical Society Series B-Methodological 52(1), 105–124.Google Scholar

  • IPCC. (2007). Climate change 2007: Impacts, adaptation and vulnerability. Working Group II contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. T. R. Carter, R. N. Jones, S. B. X. Lu, C. Conde, L. O. Mearns, & B. C. O’Neill (Eds.). Cambridge, UK: Cambridge University Press.Google Scholar

  • IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, … L. L. White (Eds.). Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar

  • Jones, R. N., Patwardhan, A., Cohen, S., Dessai, S., Lammel, A., Lempert, R. J., … van Storch, H. (2014). Chapter 2. Foundations for decision making. In Intergovernmental Panel on Climate Change (IPCC) (Ed.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar

  • Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux.Google Scholar

  • Kalra, N., Hallegatte, S., Lempert, R. J., Brown, C., Fozzard, A., Gill, S., & Shah A. (2014). Agreeing on robust decisions: A new process for decision making under deep uncertainty. Washington, DC: Policy Research Working paper, World Bank.Google Scholar

  • Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many-objective robust decision making for complex environmental systems undergoing change. Environmental Modeling and Software, 42, 55–71.Google Scholar

  • Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives. Cambridge, UK: Cambridge University Press.Google Scholar

  • Kwakkel, J., Walker, W., & Marchau, V. (2010). Classifying and communicating uncertainties in model-based policy analysis. International Journal of Technology Management, 10(4/2010), 1468–4322.Google Scholar

  • Lee, K. (1993). Compass and gyroscope: Integrating science and politics for the environment. Washington, DC: Island Press.Google Scholar

  • Lempert, R. J. (2013). Scenarios that illuminate vulnerabilities and robust responses. Climatic Change, 117, 627–646.Google Scholar

  • Lempert, R. J., & Popper, S. W. (2005). High-performance government in an uncertain world. In R. Klitgaard & P. Light (Eds.), High Performance Government: Structure, Leadership, and Incentives. Santa Monica, CA: RAND Corporation.Google Scholar

  • Lempert, R. J., & Collins, M. (2007). Managing the risk of uncertain threshold responses: Comparison of robust, optimum, and precautionary approaches. Risk Analysis, 27(4), 1009–1026.CrossrefGoogle Scholar

  • Lempert, R. J., & Groves, D. G. (2010). Identifying and evaluating robust adaptive policy responses to climate change for water management agencies in the American West. Technological Forecasting and Social Change, 77, 960–974.Google Scholar

  • Lempert, R. J., Schlesinger, M. E., & Bankes, S. C. (1996). When we don’t know the costs or the benefits: Adaptive strategies for abating climate change. Climatic Change, 33(2), 235–274.CrossrefGoogle Scholar

  • Lempert, R. J., Popper, S. W., & Bankes, S. C. (2003). Shaping the next one hundred years: New methods for quantitative, long-term policy analysis. Santa Monica, CA: RAND Corporation.Google Scholar

  • Lempert, R. J., Nakicenovic, N., Sarewitz, D., & Schlesinger, M. (2004). Characterizing climate-change uncertainties for decision-makers – An editorial essay. Climatic Change, 65(1–2), 1–9.CrossrefGoogle Scholar

  • Lempert, R. J., Groves, D. G., Popper, S. W., & Bankes, S. C. (2006). A general, analytic method for generating Robust strategies and narrative scenarios. Management Science, 52(4), 514–528.CrossrefGoogle Scholar

  • Lempert, R. J., Sriver, R. L., & Keller, K. (2012). Characterizing uncertain sea level rise projections to support investment decisions. Sacramento, CA: California Energy Commission.Google Scholar

  • Lempert, R. J., Groves, D. G., & Fischbach, J. R. (2013a). Is it ethical to use a single probability density function? Santa Monica, CA: RAND Corporation.Google Scholar

  • Lempert, R. J., Kalra, N., Peyraud, S., Mao, Z., Tan, S. B., Cira D., & Lotsch A. (2013b). Ensuring robust flood risk management in Ho Chi Minh City: A robust decision making demonstration. Washington, DC: World Bank.Google Scholar

  • Lempert, R. J., Popper, S. W., Groves, D. G., Kalra, N., Fischbach, J. R., Bankes, S. C., … McInerney D. J. (2013c). Making good decisions without predictions: Robust decision making for planning under deep uncertainty. Santa Monica, CA: RAND Corporation.Google Scholar

  • March, J., & Simon H. (1958). Organizations. Oxford, England: John Wiley.Google Scholar

  • McInerney, D., Lempert, R.J., & Keller, K. (2012). What are robust strategies in the face of uncertain climate threshold responses? Robust Climate Strategies. Climate Change, 112(3-4), 547–568.Google Scholar

  • Méndez, F. J., Menéndez, M., Luceño, A., & Losada, I. J. (2007). Analyzing monthly extreme sea levels with a time-dependent GEV model. Journal of Atmospheric and Oceanic Technology, 24(5), 894–911. doi:10.1175/JTECH2009.1.CrossrefGoogle Scholar

  • Menendez, M., & Woodworth P. L. (2010). Changes in extreme high water levels based on a quasi-global tide-gauge data set. Journal of Geophysical Research-Oceans 115.Google Scholar

  • Mishan, E. J. (1994). Cost-benefit analysis. London, UK: Routledge.Google Scholar

  • Morgan, M. G., & Henrion, M. (1990). Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge, UK: Cambridge University Press.Google Scholar

  • Morgan, M. G., Kandilikar, M., Risbey, J., & Dowlatabadi, H. (1999). Why conventional tools for policy analysis are often inadequate for problems of global change. Climatic Change, 41, 271–281.CrossrefGoogle Scholar

  • Morgan, M. G., Dowlatabadi, H., Henrion, M., Keith, D., Lempert, R. J., McBride, S., … Wilbanks, T. (2009). Best practice approaches for characterizing, communicating, and incorporating scientific uncertainty in decisionmaking. Synthesis and Assessment Product 5.2.Google Scholar

  • Moss, R., Scarlett, P. L., Kenney, M. A., Kunreuther, H., Lempert, R., Manning, J., & Williams, B.K. (2014). Decision support: Connecting science, risk perception, and decisions. Washington DC: US Global Change Research Program.Google Scholar

  • National Research Council. (2009). Informing decisions in a changing climate. Washington, DC: The National Academies Press.Google Scholar

  • Neumann, J. E., & Strzepek K. (2014). State of the literature on the economic impacts of climate change in the United States. Journal of Benefit-Cost Analysis, 5(3), 411–443.Google Scholar

  • Parker, A. M., Srinivasan, S., Lempert, R. J., & Berry, S. (2013). Evaluating simulation-derived scenarios for effective decision support. Technological Forecasting & Social Change, in press.Google Scholar

  • Pfeffer, W. T., Harper, J. T., & O’Neel, S. (2008). Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321(5894), 1340–1343.Google Scholar

  • Pindyck, R. (2013). Climate change policy: What do the models tell us? Journal of Economic Literature, 51(3), 860–872.CrossrefGoogle Scholar

  • Ranger, N., Millner, A., Dietz, S., Fankhauser, S., Lopez, A., & Ruta, G. (2010). Adaptation in the UK: A decision making process. London: Granthan/CCEP Policy Brief.Google Scholar

  • Rittel, H., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169.CrossrefGoogle Scholar

  • Rosen, R. A., & Guenther, E. (2014). The economics of mitigating climate change: What can we know? Technological Forecasting & Social Change. In press.Google Scholar

  • Rosenhead, J. (2001). Robustness analysis: Keeping your options open. In Johnathan Rosenhead & J. Mingers (Eds.), Rational Analysis for a Problematic World Revisited. Chichester, UK: John WIley and Sons.Google Scholar

  • Sarewitz, D., & R. A. Pielke, J. (2000). Science, prediction: Decisionmaking, and the future of nature. Washington, DC: Island Press.Google Scholar

  • Schoemaker, P. J. H. (1993). Multiple scenario development: Its conceptual and behavioral foundation. [Abstract]. Strategic Management Journal, 14(3), 193–213.CrossrefGoogle Scholar

  • Sussman, F., Grambsch, A., Li J., & Weaver C. P. (2014). Introduction to a special issue entitled Perspectives on Implementing Benefit-Cost Analysis in Climate Assessment. Journal of Benefit-Cost Analysis,5(3), 333–346.Google Scholar

  • Taleb, N. N. (2007). The black swan: The impact of the highly improbable. New York: Random House.Google Scholar

  • Toman, M. (2014). The need for multiple types of information to inform climate change assessment. Journal of Benefit-Cost Analysis, 5(3), 469–485.Google Scholar

  • Toman, M. A., Griffin, J., & Lempert, R. J. (2008). Impacts on U.S. energy expenditures and greenhouse-gas emissions of increasing renewable-energy use: Technical report (No. 9780833044976 (pbk. alk. paper)). Santa Monica, CA: RAND Corporation.Google Scholar

  • United Nations Development Programme (UNDP). (1990). Human development report. Oxford, UK: Oxford University Press.Google Scholar

  • Walker, W., Marchau, V., & Swanson, D. (2010). Addressing deep uncertainty using adaptive policies. Technology Forecasting and Social Change, 77, 917–923.Google Scholar

  • Walker, W. E., Rahman, S. A., & Cave, J. (2001). Adaptive policies, policy analysis, and policy-making. European Journal of Operational Research, 128, 282–289.Google Scholar

  • Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.Google Scholar

  • Weaver, C. P., Lempert, R. J., Brown, C., Hall, J. A., Revell, D., & Sarewitz, D. (2013). Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks. WIREs Climate Change, 4,39–60.Google Scholar

  • Weyant, J. (2014). Integrated assessment of climate change: state of the literature. Journal of Benefit-Cost Analysis, 5(3), 377–409.Google Scholar

  • Woodworth, P. L., & Blackman D. L. (2004). Evidence for systematic changes in extreme high waters since the mid-1970s. J Climate 17(6), 1190–1197.Google Scholar

About the article

Corresponding author: Robert J. Lempert, Rand Corporation, Santa Monica, CA 90401, USA, e-mail:


Published Online: 2015-01-13

Published in Print: 2014-12-01


Citation Information: Journal of Benefit-Cost Analysis, Volume 5, Issue 3, Pages 487–514, ISSN (Online) 2152-2812, ISSN (Print) 2194-5888, DOI: https://doi.org/10.1515/jbca-2014-9006.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
Tony E. Wong, Alexander M. R. Bakker, Kelsey Ruckert, Patrick Applegate, Aimée B. A. Slangen, and Klaus Keller
Geoscientific Model Development, 2017, Volume 10, Number 7, Page 2741
[4]
Edoardo Borgomeo, Mohammad Mortazavi-Naeini, Jim W. Hall, and Benoit P. Guillod
Earth's Future, 2018
[5]
Marc Fleurbaey
Canadian Journal of Economics/Revue canadienne d'économique, 2018, Volume 51, Number 1, Page 5
[6]
Jarl Kind, W.J. Wouter Botzen, and Jeroen C.J.H. Aerts
Wiley Interdisciplinary Reviews: Climate Change, 2017, Volume 8, Number 2, Page e446
[7]
Ryan L. Sriver, Robert J. Lempert, Per Wikman-Svahn, Klaus Keller, and Nanette H Bishopric
PLOS ONE, 2018, Volume 13, Number 2, Page e0190641
[8]
Irena Creed, Marian Weber, Francesco Accatino, and David Kreutzweiser
Forests, 2016, Volume 7, Number 12, Page 60
[9]
Fran Sussman, Christopher P. Weaver, and Anne Grambsch
Journal of Benefit-Cost Analysis, 2014, Volume 5, Number 03, Page 347
[10]
John Weyant
Journal of Benefit-Cost Analysis, 2014, Volume 5, Number 03, Page 377

Comments (0)

Please log in or register to comment.
Log in