Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 24, Issue 4


Effect of acute immobilization stress with or without a heme oxygenase inducer on testicular structure and function in male albino rats

Neven Makram Aziz / Merhan Mamdouh Ragy / Mariana Fathy Gayyed
Published Online: 2013-03-18 | DOI: https://doi.org/10.1515/jbcpp-2012-0066


Background: Stress disturbs homeostasis and may induce various disorders. Immobilization stress (IS) induced due to reduced area provided for mobility results in the imbalance of oxidant and antioxidant status. Stress leads to male reproductive dysfunction in many species, including rodents and humans. Induction of heme oxygenase-1 (HO-1), the rate limiting enzyme in heme degradation, increases host antioxidant defenses. We elucidated the protective role of induction of HO-1 by hemin on testicular damage induced by acute IS.

Methods: Male albino rats were immobilized for a period of 6 h. Hemin was given for 3 consecutive days (40 μmol/kg/day, s.c.), before subjecting the animals to acute IS.

Results: Upregulation of HO-1 following hemin administration was evidenced in our study by increasing carboxyhemoglobin (COHb) level. Histopathological evaluation confirmed that acute IS caused significant testicular tissue injury, which improves in groups pretreated with hemin. Acute IS also caused significant increases in serum catecholamines and corticosterone levels; however, it produced a significant decrease in testosterone level with non-significant changes in luteinizing hormone (LH) level. In addition, it was found that IS significantly increased testicular malondialdehyde (MDA) and decreased catalase activities. The HO-1 inducer (i.e., hemin) significantly decreased catecholamines and corticosterone levels, and increased testosterone and LH levels. Hemin also decreased testicular MDA and increased catalase activities significantly.

Conclusions: Induction of HO-1 protects the testes through its antioxidant and anti-inflammatory effects. Thus, it represents a potential therapeutic option to protect testicular tissue from detrimental effects of IS.

Keywords: heme oxygenase-1; hemin; immobilization stress; testosterone


  • 1.

    Chrousos G. Organization and integration of the endocrine system. Sleep Med Clin 2007;2:125–45.CrossrefPubMedGoogle Scholar

  • 2.

    Potemina T. Impairment of spermatogenesis in male rats during stress. Bull Exp Biol Med 2008;145:700–2.Google Scholar

  • 3.

    Retana-Márquez S, Bonilla-Jaime H, Vázquez-Palacios G, Martínez-García R, Velázquez-Moctezuma J. Changes in masculine sexual behavior, corticosterone and testosterone in response to acute and chronic stress in male rats. Horm Behav 2003;44:327–37.CrossrefGoogle Scholar

  • 4.

    Yilmaz F. Effect of immobilization stress on gonadotropic hormones and gonadal steroid hormones. Zh Evol Biokhim Fiziol 2003;39:226–8.PubMedGoogle Scholar

  • 5.

    Hjollund N, Bonde J, Henriksen T, Giwercman A, Olsen J. Reproductive effects of male psychologic stress. Epidemiology 2004;159:21–7.Google Scholar

  • 6.

    Wingfield J, Sapolsky R. Reproduction and resistance to stress: when and how. J Neuroendocrinol 2003;15:711–24.PubMedCrossrefGoogle Scholar

  • 7.

    Ozawa N, Goda N, Makino N, Yamaguchi T, Yoshimura Y, Suematsu M. Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. J Clin Invest 2002;109:457–67.Google Scholar

  • 8.

    Morio L, Leone A, Sawant S, Nie A, Parker J, Taggart P, et al. Hepatic expression of heme oxygenase-1 and antioxidant response element-mediated genes following administration of ethinyl estradiol to rats. Toxicol Appl Pharmacol 2006;216: 416–25.Google Scholar

  • 9.

    Chen Y, Zhu X, Zhao X, Xing H, Li Y. Hemin, a heme oxygenase-1 inducer, improves aortic dysfunction in insulin resistant rats. Chin Med J 2008;121:241–7.Google Scholar

  • 10.

    Wen T, Wu Z, Liu Y, Tan Y, Ren F, Wu H. Upregulation of heme oxygenase-1 with hemin prevents D-galactosamine and lipopolysaccharide-induced acute hepatic injury in rats. Toxicology 2007;237:184–93.Google Scholar

  • 11.

    Ndisang J, Wu L, Zhao W, Wang R. Induction of heme oxygenase-1 and stimulation of cGMP production by hemin in aortic tissues from hypertensive rats. Blood 2003;101: 3893–900.PubMedGoogle Scholar

  • 12.

    Kvetnansky R, Mikulaj L. Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 1970;87:738–43.Google Scholar

  • 13.

    Bhatia N, Jaggi A, Singh N, Anand P, Dhawan R. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis. J Nat Med 2011;65:532–43.PubMedCrossrefGoogle Scholar

  • 14.

    Bhattacharya D, Sur T. The effect of Panax ginseng and diazepam on brain and hypothalamic 5-hydroxytryptamine during stress. Indian J Physiol Pharmacol 1999;43:505–9.Google Scholar

  • 15.

    Silber R, Busch R, Oslapas R. Practical procedure for estimation of corticosterone or hydrocortisone. Clin Chem 1958;4:278–85.PubMedGoogle Scholar

  • 16.

    Ciarlone A. Further modification of fluorometric method for analyzing brain amines. Microchem J 1978;23:9–12.CrossrefGoogle Scholar

  • 17.

    Mayes R. Measurement of carbon monoxide and cyanide in blood. J Clin Pathol 1993;46:982–8.PubMedCrossrefGoogle Scholar

  • 18.

    Tilbrook A, Turner A, Clarke I. Effects of stress on reproduction in non-rodent mammals: the role of glucocorticoids and sex differences. Rev Reprod 2000;5:105–13.PubMedCrossrefGoogle Scholar

  • 19.

    Pacak K, Palkovits M. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 2001;22:502–48.CrossrefPubMedGoogle Scholar

  • 20.

    Bulger E, Garcia I, Maier R. Induction of heme-oxygenase 1 inhibits endothelial cell activation by endotoxin and oxidant stress. Surgery 2003;134:146–52.Google Scholar

  • 21.

    Bilban M, Haschemi A, Wegiel B, Chin B, Wagner O, Otterbein L. Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med (Berl) 2008;86:267–79.CrossrefPubMedGoogle Scholar

  • 22.

    Desmard M, Boczkowski J, Poderoso J, Motterlini R. Mitochondrial and cellular heme-dependent proteins as targets for the bioactive function of the heme oxygenase/carbon monoxide system. Antioxid Redox Signal 2007;9:2139–55.CrossrefGoogle Scholar

  • 23.

    Clark J, Foresti R, Green C, Motterlini R. Dynamics of haemoxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem J 2000;348:615–9.Google Scholar

  • 24.

    Erario M, Gonzales S, Noriega G, Tomaro M. Bilirubin and ferritin as protectors against hemin-induced oxidative stress in rat liver. Cell Mol Biol 2002;48:877–84.Google Scholar

  • 25.

    Orr T, Taylor M, Bhattacharyya A, Collins D, Mann D. Acute immobilization stress disrupts testicular steroidogenesis in adult male rats by inhibiting the activities of 17α-hydroxylase and 17,20-lyase without affecting the binding of LH/hCG receptors. J Androl 1994;15:302–8.Google Scholar

  • 26.

    Dong Q, Salva A, Sottas C, Niu E, Holmes M, Hardy M. Rapid glucocorticoid mediation of suppressed testosterone biosynthesis in male mice subjected to immobilization stress. J Androl 2004;25:973–81.PubMedGoogle Scholar

  • 27.

    Hu G, Lian Q, Lin H, Latif S, Morris D, Hardy M, et al. Rapid mechanisms of glucocorticoid signaling in the Leydig cell. Steroids 2008;73:1018–24.Google Scholar

  • 28.

    Martin L, Tremblay J. Glucocorticoids antagonize cAMP-induced star transcription in Leydig cells through the orphan nuclear receptor NR4A1. J Mol Endocrinol 2008;41:165–75.CrossrefGoogle Scholar

  • 29.

    Hardy M, Gao H, Dong Q, Ge R, Wang Q, Chai W, et al. Stress hormone and male reproductive function. Cell Tissue Res 2005;322:147–53.Google Scholar

  • 30.

    Gao H, Tong M, Hu Y, Guo Q, Ge R, Hardy M. Glucocorticoid induces apoptosis in rat Leydig cells. Endocrinology 2002;143:130–8.Google Scholar

  • 31.

    Jara M, Carballada R, Esponda P. Age-induced apoptosis in the male genital tract of the mouse. Reproduction 2004;127: 359–66.Google Scholar

  • 32.

    Rai J, Pandey S, Srivastava R. Effect of immobilization stress on spermatogenesis of albino rats. J Anat Soc 2003;52:55–7.Google Scholar

  • 33.

    Sanchez A, Toledo-Pinto E, Menezes M, Pereira O. Changes in norepinephrine and epinephrine concentrations in adrenal gland of the rats submitted to acute immobilization stress. Pharmacol Res 2003;48:607–13.CrossrefPubMedGoogle Scholar

  • 34.

    Xu L, Chen X, Sun B, Sterling C, Tank A. Evidence for regulation of tyrosine hydroxylase mRNA translation by stress in rat adrenal medulla. Brain Res 2007;1158:1–10.Google Scholar

  • 35.

    Hardy M, Sottas C, Ge R, McKittrick C, Tamashiro K, McEwen B, et al. Trends of reproductive hormones in male rats during psychosocial stress: role of glucocorticoid metabolism in behavioral dominance. Biol Reprod 2002;67:1750–5.CrossrefPubMedGoogle Scholar

  • 36.

    Popovic M, Janicijevic-Hudomal S, Kaurinovic B, Rasic J, Trivic S, Vojnović M. Antioxidant effects of some drugs on immobilization stress combined with cold restraint stress. Molecules 2009;14:4505–16.CrossrefPubMedGoogle Scholar

  • 37.

    Dhanabalan S, Jubendradass R, Latha P, Mathur P. Effect of restraint stress on 2,3,7,8 tetrachlorodibenzo-p-dioxin induced testicular and epididymal toxicity in rats. Hum Exp Toxicol 2011;30:567–78.CrossrefGoogle Scholar

  • 38.

    Kumar A, Garg R, Prakash A. Effect of St. John’s Wort (Hypericum perforatum) treatment on restraint stress-induced behavioral and biochemical alteration in mice. BMC Complement Altern Med 2010;10:18.CrossrefGoogle Scholar

  • 39.

    Agarwal A, Sharma R, Nallella K, Thomas A, Alvarez J, Sikka S. Reactive oxygen species as an independent marker of male factor infertility. Fertil Steril 2006;86:878–85.PubMedCrossrefGoogle Scholar

  • 40.

    Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008;59:2–11.PubMedGoogle Scholar

  • 41.

    Otterbein L, Choi A. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 2000;279:L1029–37.Google Scholar

  • 42.

    Chan K, Han X, Kan Y. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci USA 2001;98:4611–6.Google Scholar

  • 43.

    Lin Q, Weis S, Yang G, Zhuang T, Abate A, Dennery P. Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress. Free Radic Biol Med 2008;44:847–55.Google Scholar

  • 44.

    Wang R, Wang Z, Wu L. Carbon-monoxide-induced vasorelaxation and the underlying mechanisms. Br J Pharmacol 1997;121:927–34.Google Scholar

  • 45.

    Roman R. P450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 2002;82:131–85.PubMedGoogle Scholar

  • 46.

    Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 2005;57:585–630.CrossrefPubMedGoogle Scholar

  • 47.

    Lo W, Hsiao M, Tung C, Tseng C. The cardiovascular effects of nitric oxide and carbon monoxide in the nucleus tractus solitarii of rats. J Hypertens 2004;22:1182–90.CrossrefPubMedGoogle Scholar

  • 48.

    Lo W, Lu P, Ho W, Hsiao M, Tseng C. Induction of heme oxygenase-1 is involved in carbon monoxide-mediated central cardiovascular regulation. J Pharmacol Exp Ther 2006;318:8–16.Google Scholar

  • 49.

    Asif A, Ljubojevic M, Sabolic I, Shnitsar V, Metten M, Anzai N, et al. Regulation of steroid hormones biosynthesis and organic anion transporters by forskolin and DHEA-S treatment in adrenocortical cells. Am J Physiol Endocrinol Metab 2006;291:E1351–9.Google Scholar

  • 50.

    Grion N, Repetto E, Pomeraniec Y, Calejman CM, Astort F, Sanchez R, et al. Induction of nitric oxide synthase and heme oxygenase activities by endotoxin in the rat adrenal cortex: involvement of both signaling systems in the modulation of ACTH-dependent steroid production. J Endocrinol 2007;194:11–20.Google Scholar

  • 51.

    Hodel A. Effects of glucocorticoids on adrenal chromaffin cells. J Neuroendocrinol 2001;13:216–20.CrossrefPubMedGoogle Scholar

  • 52.

    Cavicchi M, Gibbs L, Whittle B. Inhibition of inducible nitric oxide synthase in the human intestinal epithelial cell line, DLD-1, by the inducers of heme oxygenase 1, bismuth salts, heme, and nitric oxide donors. Gut 2000;47:771–8.Google Scholar

  • 53.

    Kim D, Choi H, Kim S, Hwang O. Upregulation of catecholamine biosynthetic enzymes by nitric oxide. J Neurosci Res 2003;72:98–104.Google Scholar

  • 54.

    Alexandreanu L, Lawson D. Heme oxygenase in the rat anterior pituitary: immunohistochemical localization and possible role in gonadotropin and prolactin secretion. Exp Biol Med 2003;2228:64–9.Google Scholar

  • 55.

    Shiraishi K, Naito K. Increased expression of Leydig cell haem oxygenase-1 preserves spermatogenesis in varicocele. Hum Reprod 2005;20:2608–26.Google Scholar

  • 56.

    Yang S, Shih H, Chow Y, Tsai P, Wang T, Wang P, et al. The protective role of heme oxygenase-1 induction on testicular tissues after testicular torsion and detorsion. J Urol 2007;177:1928–33.Google Scholar

  • 57.

    Li Volti G, Sacerdoti D, Di Giacomo C, Barcellona M, Scacco A, Murabito P, et al. Natural heme oxygenase-1 inducers in hepatobiliary function. World J Gastroenterol 2008;14: 6122–32.Google Scholar

About the article

Corresponding author: Merhan Mamdouh Ragy, MD, PhD, Assistant Professor, Faculty of Medicine, Department of Physiology, Minia University, 61111, Minia, Egypt, Phone: +2-01005703553, Fax: +2-0862324414, E-mail:

Received: 2012-10-29

Accepted: 2013-01-21

Published Online: 2013-03-18

Published in Print: 2013-11-01

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 24, Issue 4, Pages 255–262, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2012-0066.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Supatcharee Arun, Jaturon Burawat, Supataechasit Yannasithinon, Wannisa Sukhorum, Akgpol Limpongsa, and Sitthichai Iamsaard
Journal of Zhejiang University-SCIENCE B, 2018, Volume 19, Number 12, Page 948
Supatcharee Arun, Jaturon Burawat, Wannisa Sukhorum, Apichakan Sampannang, Nongnut Uabundit, and Sitthichai Iamsaard
Journal of Zhejiang University-SCIENCE B, 2016, Volume 17, Number 1, Page 21
Mehrnoosh Maalhagh, Abdolreza Sotoodeh Jahromi, Alireza Yusefi, Ali Razeghi, Hassan Zabetiyan, Mohammad Yasin Karami, and Abdol Hossein Madani
Pakistan Journal of Biological Sciences, 2016, Volume 19, Number 1, Page 43
Luka Đudarić, Ariana Fužinac-Smojver, Damir Muhvić, and Jasminka Giacometti
Food Research International, 2015, Volume 77, Page 290

Comments (0)

Please log in or register to comment.
Log in