Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 24, Issue 4


Nevirapine induces testicular toxicity in Wistar rats: reversal effect of kolaviron (biflavonoid from Garcinia kola seeds)

Oluwatosin A. Adaramoye
  • Corresponding author
  • Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olubukola O. Akanni
  • Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ebenezer O. Farombi
  • Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-08 | DOI: https://doi.org/10.1515/jbcpp-2012-0078


Background: Nevirapine (NVP) is a non-nucleoside reverse transcriptase inhibitor used in the treatment of HIV infections and has been reported to be toxic to the male reproductive system. This study was designed to evaluate the ameliorative effects of kolaviron (KV), a biflavonoid from Garcinia kola, on NVP-induced testicular toxicity.

Methods: The adult male Wistar rats were given two and four times therapeutic doses of NVP (NVP-2T and NVP-4T; 18 and 36 mg/kg NVP) alone or in combination with KV (200 mg/kg). NVP was given daily, whereas KV was administered five times in a week by oral gavage.

Results: Treatment with NVP did not alter the body weight gain and relative weight of testis of the rats. NVP-4T significantly (p<0.05) decreased the sperm motility, protein content, and live-dead ratio and also increased the percentage sperm abnormalities of the rats. Although NVP-4T significantly increased sperm abnormalities, it has no effect on epididymal sperm count. Also, NVP-4T caused a significant (p<0.05) elevation of serum aminotransferases and γ-glutamyl transferase activities. In addition, NVP-4T significantly (p<0.05) decreased the levels of testicular superoxide dismutase, catalase, glutathione S-transferase, and glutathione with marked elevation of malondialdehyde (index of lipid peroxidation) in the rats. In contrast, NVP-2T did not produce an adverse effect on the biochemical indices studied in testes and sperm of rats. Supplementation with KV significantly ameliorated the biochemical changes caused by NVP-4T.

Conclusions: Taken together, KV reversed the adverse effects of NVP-4T on testicular antioxidant enzymes and markers of oxidative stress in the rats.

Keywords: antiretroviral; Garcinia kola; nevirapine; oxidative stress; testis; toxicity


  • 1.

    Warren KJ, Boxwell DE, Kim NY, Drolet BA. Nevirapine-associated Stevens-Johnson syndrome. Lancet 1998;351:567.Google Scholar

  • 2.

    Fagot JP, Mockenhaupt M, Bouwes-Bavinck JN, Naldi L, Viboud C, Roujeau JC; EuroSCAR Study Group. Nevirapine and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. AIDS 2001;15:1843–8.CrossrefGoogle Scholar

  • 3.

    Adaramoye OA, Adesanoye OA, Adewumi OM, Akanni O. Studies on the toxicological effect of nevirapine, an antiretroviral drug, on the liver, kidney and testis of male Wistar rats. Hum Exp Toxicol 2012;31:676–85.CrossrefWeb of SciencePubMedGoogle Scholar

  • 4.

    Halliwell B, Grootveld M. The measurement of free radical reactions in humans: some thoughts for future experimentation. FEBS Lett 1987;213:9–14.Google Scholar

  • 5.

    Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ. A series of prostaglandin F2–like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 1990;87:9383–7.CrossrefGoogle Scholar

  • 6.

    Morrow JD, Roberts LJ. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol 1999;300:3–12.Web of ScienceGoogle Scholar

  • 7.

    Roberts LJ, Morrow JD. Isoprostanes as markers of lipid peroxidation in atherosclerosis. In: Serhan CN, Ward PA, editors. Molecular and cellular basis of inflammation. Totowa, NJ: Humana Press, 1999:141–63.Google Scholar

  • 8.

    Farombi EO, Adepoju BF, Ola-Davies OE, Emerole GO. Chemoprevention of aflatoxin B1-induced genotoxicity and hepatic oxidative damage in rats by kolaviron, a natural biflavonoid of Garcinia kola seeds. Eur J Cancer Prev 2005;14:207–14.CrossrefGoogle Scholar

  • 9.

    Adaramoye OA, Adeyemi EO. Hepatoprotection of D-galactosamine-induced toxicity in mice by purified fractions from Garcinia kola seed. Basic Clin Pharmacol Toxicol 2006;98:135–41.Google Scholar

  • 10.

    Iwu MM, Igboko OA, Okunji CO, Tempesta MS. Anti-diabetic and aldose reductase activities of biflavanones of Garcinia kola. J Pharm Pharmacol 1990;42:290–2.CrossrefGoogle Scholar

  • 11.

    Adaramoye OA, Adeyemi EO. Hypoglycaemic and hypolipidaemic effects of fractions from kolaviron, a biflavonoid complex from Garcinia kola in streptozotocin-induced diabetes mellitus rats. J Pharm Pharmacol 2006;8: 121–8.CrossrefGoogle Scholar

  • 12.

    Adaramoye OA, Farombi EO, Adeyemi EO, Emerole GO. Inhibition of human low-density lipoprotein oxidation by flavonoids of Garcinia kola seeds. Pak J Med Sci 2005;21:331–9.Google Scholar

  • 13.

    Iwu MM. Antihepatotoxicity of Garcinia kola seeds. Experientia 1985;41:679–700.Google Scholar

  • 14.

    Cotterhill PJ, Scheinmann F, Stenhouse TA. Extractives from Guttiferae kolaflavanone, a new biflavanone from the nuts of Garcinia kola Heckel. J Chem Soc Perkin Trans 1978; 1:246.Google Scholar

  • 15.

    Adaramoye OA, Awogbindin I, Okusaga JO. Effect of kolaviron, a biflavonoid complex from Garcinia kola seeds, on ethanol-induced oxidative stress in liver of adult Wistar rats. J Med Food 2009;12:584–90.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 16.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75.Google Scholar

  • 17.

    Mohun AF, Cook LJ. Simple method for measuring serum level of glutamate-oxaloacetate and glutamate-pyruvate transaminases in laboratories. J Clin Pathol 1957;10:394–9.CrossrefGoogle Scholar

  • 18.

    Reitman S, Frankel S. A colorimetric method for the determination of serum level of glutamate-oxaloacetate and pyruvate transaminases. Am J Clin Pathol 1957;28:56–63.Google Scholar

  • 19.

    Fossati R, Melzid’Eril GV, Turenghi G, Precipe L, Berti G. A kinetic colorimetric assay of γ-glutamyltransferase. Clin Chem 1986;32:1581–4.PubMedGoogle Scholar

  • 20.

    King EJ, Armstrong AR. Calcium, phosphorus and phosphatases. In: Varley H, editor. Practical clinical biochemistry. New Delhi: CBS Publishers, 1988:458–9.Google Scholar

  • 21.

    Walls R, Kumar KS, Hochstein P. Aging human erythrocytes. Differential sensitivity of young and old erythrocytes to hemolysis induced by peroxide in the presence of thyroxine. Arch Biochem Biophys 1976;176:463–8.Google Scholar

  • 22.

    Moron MA, Depierre JW, Mannervick B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979; 582:67–78.Google Scholar

  • 23.

    McCord JM, Fridovich I. Superoxide dismutase, an enzymatic function for erythrocuperin. J Biol Chem 1969;244: 6049–55.Google Scholar

  • 24.

    Aebi H. Catalase. In: Bergmeyer HV, editor. Methods of enzymatic analysis. New York: Verlag Chemie, 1974:673–84.Google Scholar

  • 25.

    Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974;249:7130–9.Google Scholar

  • 26.

    Zemjanis R. Diagnostic and therapeutic technique in animal reproduction: collection and evaluation of semen. Baltimore: William and Wilkins Co., 1970:139–53 pp.Google Scholar

  • 27.

    Rezvanfar M, Sadrkhanlou R, Ahmadi A, Shojaei-Sadee H, Rezvanfar M, Mohammadirad A, et al. Protection of cyclophosphamide-induced toxicity in reproductive tract histology, sperm characteristics, and DNA damage by an herbal source; evidence for role of free-radical toxic stress. Hum Exp Toxicol 2008;27:901–10.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 28.

    Pant N, Srivastava SP. Testicular and spermatotoxic effects of quinalphos in rats. J Appl Toxicol 2003;23:271–4.CrossrefPubMedGoogle Scholar

  • 29.

    Wells ME, Awa OA. New technique for assessing acrosomal characteristics of spermatozoa. J Dairy Sci 1970;53:227.CrossrefPubMedGoogle Scholar

  • 30.

    Gilbert DL, Colton CA. Reactive oxygen species in biological systems: an interdisciplinary approach. New York: Kluwer Academic/Plenum Publishers, 1999:138–45 pp.Google Scholar

  • 31.

    Sies H. Oxidative stress: introduction. In: Oxidative stress, oxidant and antioxidants. San Diego, CA: Academic Press, 1991:15–22 pp.Google Scholar

  • 32.

    Trush MA, Kensler TW. An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radic Biol Med 1991;10:201–9.Google Scholar

  • 33.

    Siems WG, Grune T, Esterbauer H. 4-Hydroxynonenal formation during ischemia and reperfusion of rats small intestine. Life Sci 1995;57:785–9.PubMedCrossrefGoogle Scholar

  • 34.

    Wang MY, Dhingra K, Hittelman WN, Liehr JG, deAndrade M, Li DH. Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissues. Cancer Epidemiol Biomarkers Prev 1996;5:705–10.PubMedGoogle Scholar

  • 35.

    Aitken RJ. Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol Rep 1989; 40:183–97.CrossrefGoogle Scholar

  • 36.

    Lopes S, Jurisicova A, Sun J, Casper RF. Reactive oxygen species: a potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 1998;13:896–900.CrossrefPubMedGoogle Scholar

  • 37.

    Kaplan MM. Laboratory tests. In: Schiff L, Schiff ER, editors. Diseases of the liver, 7th ed. Philadelphia: JB Lippincott, 1993:108–44 pp.Google Scholar

  • 38.

    Guoyao W, Yun-Zhong F, Sheng Y, Joanne R, Nancy D. Glutathione metabolism and its implications for health. J Nutr 2004;134:489–92.Google Scholar

  • 39.

    Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005;45:51–88.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 40.

    Dröge W. Metabolische Störungen bei HIV-Infektion (Metabolic disturbances with HIV infection). In: Project News; No. 2. Berlin, Germany: AIDS-Zentrum des Bundesgesundheitsamtes, 1989:4 pp.Google Scholar

  • 41.

    Halliwell B. Free radicals, antioxidants and human diseases, curiosity, causes or consequence. Lancet 1994;344:720–4.Google Scholar

  • 42.

    Smith GJ, Ohl VS, Litwack G. The glutathione-S-transferases and chemically induced hepato-carcinogenesis: a review. Cancer Res 1977;37:8–14.Google Scholar

  • 43.

    Vernet P, Aitken RJ, Drevet JR. Antioxidant strategies in the epidydimis. Mol Cell Endocrinol 2004;216:31–9.Google Scholar

  • 44.

    Farombi EO, Shrotriya S, Surh YJ. Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-κB and AP-1. Life Sci 2009;84:149–55.Web of ScienceGoogle Scholar

  • 45.

    Farombi EO, Abarikwu SO, Adedara IA, Oyeyemi MO. Curcumin and kolaviron ameliorate di-n-butylphthalate-induced testicular damage in rats. Basic Clin Pharmacol Toxicol 2007;100:43–8.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 46.

    Farombi EO, Ugwuezunmba MC, Ezenwadu TT, Oyeyemi MO, Ekor M. Tetracycline induced reproductive toxicity in male rats: effects of vitamin C and N-acetylcysteine. Exp Toxicol Pathol 2008;60:77–85.Web of ScienceGoogle Scholar

  • 47.

    Farombi EO, Nwaokeafor IA. Anti-oxidant mechanisms of kolaviron: studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats. Clin Exp Pharmacol Physiol 2005;32:667–74.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Dr. Oluwatosin A. Adaramoye, Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria, Phone: +234-808-838-2846, Fax: +234-2-810-3043, E-mail:

Received: 2012-12-18

Accepted: 2013-04-26

Published Online: 2013-06-08

Published in Print: 2013-11-01

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 24, Issue 4, Pages 313–320, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2012-0078.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Afolabi C. Akinmoladun, Bolanle L. Akinrinola, M. Tolulope Olaleye, and Ebenezer O. Farombi
Neurochemical Research, 2015, Volume 40, Number 4, Page 777
Ebenezer Tunde Olayinka and Ayokanmi Ore
Journal of Toxicology, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.
Log in