1.
Leithead CS, Lind AR. Heat stress and heat disorders. London: Cassell, 1964.Google Scholar
2.
Sherwood S, Huber M. An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci USA 2010;107:9552–5.CrossrefGoogle Scholar
3.
Cruz R, Harasawa H, Lal M, Wu S, Anokhin Y, Punsalmaa B, et al. Asia Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007.Google Scholar
4.
Meehl G, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004;305:994–7.Google Scholar
5.
Vandentorren S, Suzan F. Mortality in 13 French cities during August 2003 heat wave. Am J Public Health 2004;94:1518–20.Google Scholar
6.
Luber G, McGeehin M. Climate change and extreme heat events. Am J Prev Med 2008;35:429–35.CrossrefGoogle Scholar
7.
Kjellstrom T. Climate change, direct heat exposure, health and well-being in low and middle-income countries. Glob Health Action 2009;2. DOI: 10.3402/gha.v2i0.1958.CrossrefGoogle Scholar
8.
Centers for Disease Control and Prevention. Heat-related deaths among crop workers – United States, 1992–2006. J Am Med Assoc 2008;300:1017–8.Google Scholar
9.
British Broadcasting Corporation. India heat deaths exceed 1,000. Available at: http://news.bbc.co.uk/2/hi/south_asia/2956490.stm. Accessed 8 Oct 2012.
10.
Wyndham C. Assessing the heat stress and establishing the limits for work in a hot mine. Br J Ind Med 1967;24: 255–71.Google Scholar
11.
Carter R 3rd, Cheuvront S, Williams J, Kolka M, Stephenson L, Sawka M, et al. Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med Sci Sports Exerc 2005;37:1338–44.CrossrefGoogle Scholar
12.
Mirabelli M, Quandt S, Crain R, Grzywacz J, Robinson E, Vallejos Q, et al. Symptoms of heat illness among Latino farm workers in North Carolina. Am J Prev Med 2010;39:468–71.CrossrefGoogle Scholar
13.
Jackson L, Rosenberg H. Preventing heat-related illness among agricultural workers. J Agromed 2010;15:200–15.CrossrefGoogle Scholar
14.
Malhotra M, Venkataswamy Y. Heat casualties in the Indian armed forces. Indian J Med Res 1974;62:1293–302.Google Scholar
15.
Wyndham C. A survey of the causal factors in heat stroke and of their prevention in the gold mining industry. J S Afr Inst Min Metall 1965;66:125–55.Google Scholar
16.
Alzeer A, el-Hazmi M, Warsy A, Ansari Z, Yrkendi M. Serum enzymes in heatstroke: prognostic implication. Clin Chem 1997;43:1182–7.Google Scholar
17.
Becker J, Stewart L. Heat-related illness. Am Fam Physician 2011;83:1325–30.Google Scholar
18.
Lee-Chiong T Jr, Stitt J. Heatstroke and other heat-related illnesses. The maladies of summer. Postgrad Med 1995;98:26–36.Google Scholar
19.
Sandor R. Heat illness: on site diagnosis and cooling. Phys Sportsmed 1997;25:35–40.Google Scholar
20.
Centers for Disease Control and Prevention. Heat-related illness and deaths – United States, 1994–1995. MMWR Morb Mortal Wkly Rep 1995;44:465–8.Google Scholar
21.
Barrow M, Clark K. Heat-related illnesses. Am Fam Physician 1998;58:749–56, 759.Google Scholar
22.
Miners A. The diagnosis and emergency care of heat related illness and sunburn in athletes: a retrospective case series. J Can Chiropr Assoc 2010;54:107–17.Google Scholar
23.
McGeehin M, Mirabelli M. The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ Health Perspect 2001;109(Suppl 2):185–9.CrossrefGoogle Scholar
24.
Yarbrough B, Vicario S. Rosen’s emergency medicine. Concepts and clinical practice, 5th ed. St. Louis: Mosby, 2002.Google Scholar
25.
Bouchama A, Knochel J. Medical progress: heat stroke. N Engl J Med 2002;346:1978–88.CrossrefGoogle Scholar
26.
Weiner J, Horne G. A classification of heat illness. Br Med J 1958;28:1533–5.Google Scholar
27.
Booker R, Bricknell M. Heat illness – recent developments. J R Army Med Corps 2002;148:11–8.CrossrefGoogle Scholar
28.
Bricknell M. Heat illness – a review of military experience (Part 1). J R Army Med Corps 1995;141:157–66.CrossrefGoogle Scholar
29.
Wexler R. Evaluation and treatment of heat related illnessess. Am Fam Physician 2002;65:2307–14.Google Scholar
30.
Mellion M, Shelton G. Thermoregulation, heat illness, and safe exercise in heat. Philadelphia: Mosby, 1998.Google Scholar
31.
Auerbach P, Fleisher G, Knochel J. Heatstroke: be ready for summer. Patient Care 1993;27:52–62.Google Scholar
32.
Sonna L, Sawka M, Lilly C. Exertional heat illness and human gene expression. Prog Brain Res 2007;162:321–46.CrossrefGoogle Scholar
33.
Canuso A, McLay R, Bennett J, Pyne J, Munoz K, Stenback K. Schizophreniform disorder after heat injury in a military recruit. Psychosomatics 2008;49:345–6.CrossrefGoogle Scholar
34.
Amorim F, Yamada P, Robergs R, Schneider S, Moseley P. Effects of whole-body heat acclimation on cell injury and cytokine responses in peripheral blood mononuclear cells. Eur J Appl Physiol 2011;111:1609–18.CrossrefGoogle Scholar
35.
Coris E, Ramirez A, Van Durme D. Heat illness in athletes: the dangerous combination of heat, humidity and exercise. Sports Med 2004;34:9–16.CrossrefGoogle Scholar
36.
Bröde P, Blazejczyk K, Fiala D, Havenith G, Holmér I, Jendritzky G, et al. The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment. Ind Health 2013;51:16–24.Google Scholar
37.
Streetz K, Wüstefeld T, Klein C, Manns M, Trautwein C. Mediators of inflammation and acute phase response in the liver. Cell Mol Biol (Noisy-le-grand) 2001;47:661–73.Google Scholar
38.
Bouchama A. Heatstroke: a new look at an ancient disease. Intensive Care Med 1995;21:623–5.Google Scholar
39.
Moseley P. Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 1997;83:1413–7.Google Scholar
40.
Mehta S, Jaswal D. Heat stroke. Med J Armed Forces India 2003;59:140–3.CrossrefGoogle Scholar
41.
McLaughlin C, Kane A, Auber A. MR imaging of heat stroke: external capsule and thalamic T1 shortening and cerebellar injury. Am J Neuroradiol 2003;24:1372–5.Google Scholar
42.
Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth 2007;99:4–9.CrossrefGoogle Scholar
43.
Lambert G. Role of gastrointestinal permeability in exertional heatstroke. Exerc Sport Sci Rev 2004;32:185–90.CrossrefGoogle Scholar
44.
Dokladny K, Moseley P, Ma T. Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. Am J Physiol Gastrointest Liver Physiol 2006;290:G204–12.Google Scholar
45.
Treon S, Thomas P, Broitman S. Lipopolysaccharide (LPS) processing by Kupffer cells releases a modified LPS with increased hepatocyte binding and decreased tumor necrosis factor alpha stimulatory capacity. Proc Soc Exp Biol Med 1993;202:153–8.CrossrefGoogle Scholar
46.
Gathiram P, Gaffin S, Brock-Utne J, Wells M. Time course of endotoxemia and cardiovascular changes in heat-stressed primates. Aviat Space Environ Med 1987;58:1071–4.Google Scholar
47.
Shibolet S, Coll R, Gilat T, Sohar E. Heatstroke: its clinical picture and mechanism in 36 cases. Q J Med 1967;36: 525–48.Google Scholar
48.
Erarslan E, Yüksel I, Haznedaroglu S. Acute liver failure due to non-exertional heatstroke after sauna. Ann Hepatol 2012;11:138–42.Google Scholar
49.
Knochel JP. Exertional rhabdomyolysis. N Engl J Med 1972;287:927–9.CrossrefGoogle Scholar
50.
Gaffin S, Koratich M, Hubbard R. The effect of hyperthermia on intracellular sodium concentrations of isolated human cells. Ann N Y Acad Sci 1997;813:637–9.Google Scholar
51.
Sonna L, Gaffin S, Pratt R, Cullivan M, Angel K, Lilly C. Selected contribution: effect of acute heat shock on gene expression by human peripheral blood mononuclear cells. J Appl Physiol 2002;92:2208–20.Google Scholar
52.
Glazer J. Management of heatstroke and heat exhaustion. Am Fam Physician 2005;71:2133–40.Google Scholar
53.
Lin P, Lin C, Liu H, Lee M, Lee H, Ho C, et al. Rasburicase improves hyperuricemia in patients with acute kidney injury secondary to rhabdomyolysis caused by ecstasy intoxication and exertional heat stroke. Pediatr Crit Care Med 2011;12:e424–7.CrossrefGoogle Scholar
54.
Protasi F, Paolini C, Dainese M. Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. J Physiol 2009;587:3095–100.Google Scholar
55.
Yang H, Hou C, Lin M, Chang C. Attenuating heat-induced acute lung inflammation and injury by dextromethorphan in rats. Am J Respir Cell Mol Biol 2012;46:407–13.CrossrefGoogle Scholar
56.
Chang CP, Chen SH, Lin MT. Ipsapirone and ketanserin protects against circulatory shock, intracranial hypertension, and cerebral ischemia during heatstroke. Shock 2005;24:336–40.CrossrefGoogle Scholar
57.
Magalhães F, Passos R, Fonseca M, Oliveira K, Ferreira-Júnior J, Martini A, et al. Thermoregulatory efficiency is increased after heat acclimation in tropical natives. J Physiol Anthropol 2010;29:1–12.CrossrefGoogle Scholar
58.
Nadel E, Pandolf K, Roberts M, Stolwijk J. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol 1974:37:515–20.Google Scholar
59.
Nielsen B, Hales J, Strange S, Christensen N, Warberg J, Saltin B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercisein a hot, dry environment. J Physiol 1993;460:467–85.Google Scholar
60.
Robinson S. Training, acclimatization and heat tolerance. Can Med Assoc J 1967;96:795–800.Google Scholar
61.
Horowitz M, Kaspler P, Simon E, Gerstberger R. Heat acclimation and hypohydration: involvement of central angiotensin II receptors in thermoregulation. Am J Physiol 1999;277:R47–55.Google Scholar
62.
Machado-Moreira C, Magalhães F, Vimieiro-Gomes A, Lima N, Rodrigues L. Effects of heat acclimation on sweating during graded exercise until exhaustion. J Therm Biol 2005;30:437–42.CrossrefGoogle Scholar
63.
Magalhães F, Machado-Moreira C, Vimieiro-Gomes A, Silami-Garcia E, Lima N, Rodrigues L. Possible biphasic sweating response during a short-term heat acclimation protocol for tropical natives. J Physiol Anthropol 2006;25:215–21.CrossrefGoogle Scholar
64.
Dantzler W. Handbook of physiology: comparative physiology, vol. 1. Bethesda, MD: Oxford University Press, 1997.Google Scholar
65.
Hellon R, Jones R, Macpherson R, Weiner J. Natural and artificial acclimatization to hot environments. J Physiol 1956;132:559–76.Google Scholar
66.
Horowitz M, Kodesh E. Molecular signals that shape the integrative responses of the heat-acclimated phenotype. Med Sci Sports Exerc 2010;42:2164–72.CrossrefGoogle Scholar
67.
Armstrong L, Francesconi R, Kraemer W, Leva N, Deluca J, Hubbard R. Plasma cortisol, renin, and aldosterone during an intense heat acclimation program. Int J Sports Med 1989; 10:38–42.CrossrefGoogle Scholar
68.
Wyndham C, Benade A, Williams C, Strydom N, Goldin A, Heyns A. Changes in central circulation and body fluid spaces during acclimatization to heat. J Appl Physiol 1968;25:586–93.Google Scholar
69.
Shapiro Y, Hubbard R, Kimbrough C, Pandolf K. Physiological and hematologic responses to summer and winter dry-heat acclimation. J Appl Physiol 1981;50:92–8.Google Scholar
70.
Wyndham C, Rogers G, Senay L, Mitchell D. Acclimatization in a hot, humid environment: cardiovascular adjustments. J Appl Physiol 1976;40:779–85.Google Scholar
71.
Armstrong L. Heat acclimatization. In: Fahey T, editor. Encyclopedia of sports medicine and science. Internet Society for Sport Science: http://sportsci.org, Mar. 10, 1998.
72.
Horowitz M. Do cellular heat acclimation responses modulate central thermoregulatory activity? News Physiol Sci 1998;13:218–25.Google Scholar
73.
Thomson M. A comparison between the number and distribution of functioning eccrine sweat glands in Europeans and Africans. J Physiol 1954;123:225–33.Google Scholar
74.
Kuno Y. Human perspiration. Springfield, IL: Oxford, 1956.Google Scholar
75.
Schwimmer H, Eli-Berchoer L, Horowitz M. Acclimatory-phase specificity of gene expression during the course of heat acclimation and superimposed hypohydration in the rat hypothalamus. J Appl Physiol 2006;100:1992–2003.CrossrefGoogle Scholar
76.
Taylor N, Patterson M, Regan J, Amos D. Heat acclimation procedures: preparation for humid heat exposure. Technical report, Director, Aeronautical and Maritime Research Laboratory, 1997.Google Scholar
77.
Pandolf K. Time course of heat acclimation and its decay. Int J Sports Med 1998;19:S157–60.CrossrefGoogle Scholar
78.
Saat M, Sirisinghe R, Singh R, Tochihara Y. Decay of heat acclimation during exercise in cold and exposure to cold environment. Eur J Appl Physiol 2005;95:313–20.CrossrefGoogle Scholar
79.
Weller A, Linnane D, Jonkman A, Daanen H. Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days without exposure to heat stress. Eur J Appl Physiol 2007;102:57–66.CrossrefGoogle Scholar
80.
Armstrong L, Maresh C. The induction and decay of heat acclimatisation in trained athletes. Sports Med 1991;12:302–12.CrossrefGoogle Scholar
81.
Wyndham C, Jacobs G. Loss of acclimatization after six days of work in cool conditions on the surface of a mine. J Appl Physiol 1957;11:197–9.Google Scholar
82.
Adam J, Fox R, Grimby G, Kidd D, Wolff H. Acclimatization to heat and its rate of decay in man. J Physiol 1960;152:26P–7P.Google Scholar
83.
Williams C, Wyndham C, Morrison J. Rate of loss of acclimation in summer and winter. J Appl Physiol 1967;22:21–6.Google Scholar
84.
Tetievsky A, Cohen O, Eli-Berchoer L, Gerstenblith G, Stern MD, Wapinski I, et al. Physiological and molecular evidence of heat acclimation memory: a lesson from thermal responses and ischemic cross-tolerance in the heart. Physiol Genomics 2008;34:78–87.CrossrefGoogle Scholar
85.
Pittet J, Lu L, Geiser T, Lee H, Matthay M, Welch W. Stress preconditioning attenuates oxidative injury to the alveolar epithelium of the lung following haemorrhage in rats. J Physiol 2002:538(Pt 2):583–97.Google Scholar
86.
Shellman Y, Howe W, Miller L, Goldstein N, Pacheco T, Mahajan R, et al. Hyperthermia induces endoplasmic reticulum-mediated apoptosis in melanoma and non-melanoma skin cancer cells. J Invest Dermatol 2008;128:949–56.CrossrefGoogle Scholar
87.
Hahn J, Hu Z, Thiele D, Iyer V. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 2004;24:5249–56.CrossrefGoogle Scholar
88.
Mizzen L, Welch W. Characterization of thermotolerant cell. I. Effects of protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 1988;106:1105–16.CrossrefGoogle Scholar
89.
Shamovsky I, Nudler E. New insights into the mechanism of heat shock response activation. Cell Mol Life Sci 2008;65: 855–61.CrossrefGoogle Scholar
90.
Li P, Chao Y, Chan S, Chan J. Potentiation of baroreceptor reflex response by heat shock protein 70 in nucleus tractus solitarii confers cardiovascular protection during heatstroke. Circulation 2001;103:2114–9.CrossrefGoogle Scholar
91.
Sandström M, Siegler J, Lovell R, Madden L, McNaughton L. The effect of 15 consecutive days of heat-exercise acclimation on heat shock protein 70. Cell Stress Chaperones 2008;13:169–75.CrossrefGoogle Scholar
92.
Walsh R, Koukoulas I, Garnham A, Moseley P, Hargreaves M, Febbraio M. Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 2000;6:386–93.Google Scholar
93.
Mayer M, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005;62:670–84.CrossrefGoogle Scholar
94.
Ben-Zvi A, Goloubinoff P. Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol 2001;135:84–93.Google Scholar
95.
Slepenkov S, Witt S. The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol Microbiol 2002;45:1197–206.CrossrefGoogle Scholar
96.
Glover J, Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998;94:73–82.Google Scholar
97.
Goloubinoff P, Mogk A, Zvi A, Tomoyasu T, Bukau B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 1999;96:13732–7.CrossrefGoogle Scholar
98.
Proctor CJ, Lorimer IA. Modelling the role of the Hsp70/Hsp90 system in the maintenance of protein homeostasis. PLoS One 2011;6:e22038. DOI: 10.1371/journal.pone.0022038.CrossrefGoogle Scholar
99.
Yamada P, Amorim F, Moseley P, Robergs R, Schneider S. Effect of heat acclimation on heat shock protein 72 and interleukin-10 in human. J Appl Physiol 2007;103:1196–204.CrossrefGoogle Scholar
100.
Fehrenbach E, Northoff H. Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 2001;7:66–89.Google Scholar
101.
McClung J, Hasday J, He J, Montain S, Cheuvront S, Sawka M, et al. Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. Am J Physiol Regul Integr Comp Physiol 2008;294:R185–91.Google Scholar
102.
Roth E. Nonnutritive effects of glutamine. J Nutr 2008;138:2025S–31S.Google Scholar
103.
Xue H, Slavov D, Wischmeyer P. Glutamine-mediated dual regulation of heat shock transcription factor-1 activation and expression. J Biol Chem 2012;287:40400–13.CrossrefGoogle Scholar
104.
Yaglom J, Gabai V, Meriin A, Mosser D, Sherman M. The function of HSP72 in suppression of c-Jun N-terminal kinase activation can be dissociated from its role in prevention of protein damage. J Biol Chem 1999;274:20223–8.CrossrefGoogle Scholar
105.
Yaqub B, Al-Harthi S, Al-Orainey I, Laajam M, Obeid M. Heat stroke at the Mekkah pilgrimage: clinical characteristics and course of 30 patients. Q J Med 1986;59:523–30.Google Scholar
106.
Ferris E, Blankenhorn M, Robinson H, Cullen G. Heat stroke: clinical and chemical observations on 44 cases. J Clin Invest 1938;17:249–62.CrossrefGoogle Scholar
107.
Wyndham C, Strydom N, Cooke H, Maritz J, Morrison J, Fleming P, et al. Methods of cooling subjects with hyperpyrexia. J Appl Physiol 1959;14:771–6.Google Scholar
108.
Weiner J, Khogali M. A physiological body-cooling unit for treatment of heat stroke. Lancet 1980;i:507–9.CrossrefGoogle Scholar
109.
Al-Aska A, Abu-Aisha H, Yaqub B, Al-Harthi S, Sallam A. Simplified cooling bed for heatstroke. Lancet 1987;1:381.Google Scholar
110.
Richards D, Richards R, Schofield P, Ross V, Sutton J. Management of heat exhaustion in Sydney’s The Sun City-to-Surf fun runners. Med J Aust 1979;2:457–61.Google Scholar
111.
Gagnon D, Lemire BB, Casa DJ, Kenny GP. Cold-water immersion and the treatment of hyperthermia: using 38.6°C as a safe rectal temperature cooling limit. J Athl Train 2010;45:439–44.CrossrefGoogle Scholar
112.
Reinhold H, Endrich B. Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia 1986;2:111–37.CrossrefGoogle Scholar
113.
Kampinga H, Dikomey E. Hyperthermicradiosensitization: mode of action and clinical relevance. Int J Radiat Biol 2001;77:399–408.Google Scholar
114.
Franckena M, Fatehi D, de Bruijne M, Canters R, van Norden Y, Mens J, et al. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer 2009;45:1969–78.Google Scholar
115.
Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE. Cellular responses to combinations of hyperthermia and radiation. Radiology 1977;123:463–74.Google Scholar
116.
Van der Zee J. Heating the patient: a promising approach? Ann Oncol 2002;13:1173–84.Google Scholar
117.
De Wit R, van der Zee J, van der Burg M, Kruit W, Logmans A, van Rhoon G, et al. A phase I/II study of combined weekly systemic cisplatin and locoregional hyperthermia in patients with previously irradiated recurrent carcinoma of the uterine cervix. Br J Cancer 1999;80:1387–91.Google Scholar
118.
Rietbroek R, Schilthuis M, Bakker P, van Dijk J, Postma A, González González D, et al. Phase II trial of weekly locoregional hyperthermia and cisplatin in patients with a previously irradiated recurrent carcinoma of the uterine cervix. Cancer 1997;79:935–43.CrossrefGoogle Scholar
119.
Zuchini R, Tsai H, Chen C, Huang C, Huang S, Lee G, et al. Electromagnetic thermotherapy using fine needles for hepatoma treatment. Eur J Surg Oncol 2011;37:604–10.CrossrefGoogle Scholar
120.
Pandita TK, Pandita S, Bhaumik SR. Molecular parameters of hyperthermia for radiosensitization. Crit Rev Eukaryot Gene Expr 2009;19:235–51.CrossrefGoogle Scholar
121.
Fuisting B, Richard G. Transpupillary thermotherapy (TTT) – review of the clinical indication spectrum. Medical Laser Application 2010;25:214–22.Google Scholar
122.
Honma M, Hashimoto M, Iwasaki T, Iinuma S, Takahashi H, Ishida-Yamamoto A, et al. Primary cutaneous anaplastic large cell lymphoma successfully treated with local thermotherapy using pocket hand warmers. J Dermatol 2008;35:748–50.CrossrefGoogle Scholar
123.
Chalkidou A, Simeonidis K, Angelakeris M, Samaras T, Martinez-Boubeta C, Papazisis K, et al. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. J Magn Magn Mater 2011;323: 775–80.CrossrefGoogle Scholar
124.
Li D, Tang Y, Zhao L, Geng C, Tang J. Antitumor effect and immune response induced by local hyperthermia in B16 murine melanoma: effect of thermal dose. Oncol Lett 2012;4: 711–8.Google Scholar
125.
Lauerova L, Dusek L, Simickova M, Kocák I, Vagundová M, Zaloudík J, et al. Malignant melanoma associates with Th1/Th2 imbalance that coincides with disease progression and immunotherapy response. Neoplasma 2002;49:159–66.Google Scholar
126.
Hayasaka S, Nakamura Y, Kajii E, Ide M, Shibata Y, Noda T, et al. Effects of charcoal kiln saunas (Jjimjilbang) on psychological states. Complement Ther Clin Pract 2008;14:143–8.CrossrefGoogle Scholar
127.
Masuda A, Nakazato M, Kihara T, Minagoe S, Tei C. Repeated thermal therapy diminishes appetite loss and subjective complaints in mildly depressed patients. Psychosom Med 2005;67:643–7.CrossrefGoogle Scholar
128.
Masuda A, Koga Y, Hattanmaru M, Minagoe S, Tei C. The effects of repeated thermal therapy for patients with chronic pain. Psychother Psychosom 2005;74:288–94.CrossrefGoogle Scholar
129.
Dobson R. Lying in a hot tent can ease depression by triggering release of mood chemical. Mail Online UK, 30 July 2012. Available at:http://www.dailymail.co.uk/health/article-2181259/Depression-Lying-hot-tent-ease-depression-triggering-release-mood-chemical.html.
130.
Kihara T, Biro S, Imamura M, Yoshifuku S, Takasaki K, Ikeda Y, et al. Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. J Am Coll Cardiol 2002;39:754–9.CrossrefGoogle Scholar
131.
Matsumoto S, Kawahira K, Etoh S, Ikeda S, Tanaka N. Short-term effects of thermotherapy for spasticity on tibial nerve F-waves in post-stroke patients. Int J Biometeorol 2006;50:243–50.CrossrefGoogle Scholar
132.
Basford J, Oh J, Allison T, Sheffield C, Manahan B, Hodge D, et al. Safety, acceptance, and physiologic effects of sauna bathing in people with chronic heart failure: a pilot report. Arch Phys Med Rehabil 2009;90:173–7.CrossrefGoogle Scholar
133.
Lepore DA, Knight KR, Anderson RL, Morrison WA. Role of priming stresses and Hsp70 in protection from ischemia-reperfusion injury in cardiac and skeletal muscle. Cell Stress Chaperones 2001;6:93–6.CrossrefGoogle Scholar
134.
Badgwell Doherty C, Doherty SD, Rosen T. Thermotherapy in dermatologic infections. J Am Acad Dermatol 2010;62: 909–27.CrossrefGoogle Scholar
135.
Bayata S, Türel Ermertcan A. Thermotherapy in dermatology. Cutan Ocul Toxicol 2012;31:235–40.CrossrefGoogle Scholar
136.
Reithinger R, Mohsen M, Wahid M, Bismullah M, Quinnell RJ, Davies CR, et al. Efficacy of thermotherapy to treat cutaneous leishmaniasis caused by Leishmaniatropica in Kabul, Afghanistan: a randomized, controlled trial. Clin Infect Dis 2005;40:1148–55.CrossrefGoogle Scholar
137.
Matsumoto S, Shimodozono M, Etoh S, Miyata R, Kawahira K. Effects of thermal therapy combining sauna therapy and underwater exercise in patients with fibromyalgia. Complement Ther Clin Pract 2011;17:162–6.CrossrefGoogle Scholar
138.
Lamina S, Hanif S, Gagarawa Y. Short wave diathermy in the symptomatic management of chronic pelvic inflammatory disease pain: a randomized controlled trial. Physiother Res Int 2011:16:50–6.CrossrefGoogle Scholar
139.
Ruiz-Esparza J. Nonablative radiofrequency for facial and neck rejuvenation. A faster, safer, and less painful procedure based on concentrating the heat in key areas: the ThermaLift concept. J Cosmet Dermatol. 2006;5:68–75.Google Scholar
140.
Wu Y, Cao Z, Klein W, Luo Y. Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers. Neurobiol Aging 2010;3:1055–8.CrossrefGoogle Scholar
141.
Li S, Zhou Y, Fan J, Cao S, Cao T, Huang F, et al. Heat shock protein 72 enhances autophagy as a protective mechanism in lipopolysaccharide-induced peritonitis in rats. Am J Pathol 2011;179:2822–34.CrossrefGoogle Scholar
142.
Watkins A, Cheek D, Harvey A, Blair K, Mitchell J. Heat acclimation and HSP-72 expression in exercising humans. Int J Sports Med 2008;29:269–76.CrossrefGoogle Scholar
Comments (0)