Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph


CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

Online
ISSN
2191-0286
See all formats and pricing
More options …
Volume 24, Issue 4

Issues

Heat: not black, not white. It’s gray!!!

Laxmi Prabha Singh
  • Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, Lucknow Road, New Delhi, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Medha Kapoor
  • Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, Lucknow Road, New Delhi, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shashi Bala Singh
  • Corresponding author
  • Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, Lucknow Road, New Delhi, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-08 | DOI: https://doi.org/10.1515/jbcpp-2012-0080

Abstract

Heat-related illness (HRI) is a broad term that includes clinical conditions ranging from heat cramps and syncope to heat exhaustion and heatstroke, which may result in death. HRIs are one of the major causes of death worldwide and continue to increase in severity with the rise in global temperature. The identification and estimation of heat-related morbidity and mortality is a major challenge. Heat stress manifests itself into respiratory, cardiovascular, and cerebrovascular disorders, leading to the attribution of the deaths caused by heat stress to these disorders. Although HRIs affect mankind in general, certain occupational workers such as soldiers and athletes are more prone. Various pharmacological and nonpharmacological strategies have been employed to combat HRIs. Despite this, heat exposure results in significant morbidity and mortality. Hence, complete understanding of HRIs at physiological as well as molecular level is required to facilitate design of more efficient preventive and treatment strategies. The impact of heat on mankind is not just restricted to HRIs. Heat treatment, i.e., thermotherapy, has been used extensively since ancient times for relieving pain, making heat a two-edged sword. This review attempts to summarize various HRIs, their physiological and molecular basis, and the state-of-the-art techniques/research initiatives to combat the same. It also illustrates the application of thermotherapy as a means for improving quality of life and morbidity associated with several disease conditions such as fibromyalgia syndrome, heart diseases, cancer, chronic pain, and depression.

Keywords: heat acclimation (HA); heat-related illnesses (HRIs); heat shock protein (HSP); thermotherapy

References

  • 1.

    Leithead CS, Lind AR. Heat stress and heat disorders. London: Cassell, 1964.Google Scholar

  • 2.

    Sherwood S, Huber M. An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci USA 2010;107:9552–5.CrossrefGoogle Scholar

  • 3.

    Cruz R, Harasawa H, Lal M, Wu S, Anokhin Y, Punsalmaa B, et al. Asia Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007.Google Scholar

  • 4.

    Meehl G, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004;305:994–7.Google Scholar

  • 5.

    Vandentorren S, Suzan F. Mortality in 13 French cities during August 2003 heat wave. Am J Public Health 2004;94:1518–20.Google Scholar

  • 6.

    Luber G, McGeehin M. Climate change and extreme heat events. Am J Prev Med 2008;35:429–35.CrossrefGoogle Scholar

  • 7.

    Kjellstrom T. Climate change, direct heat exposure, health and well-being in low and middle-income countries. Glob Health Action 2009;2. DOI: 10.3402/gha.v2i0.1958.CrossrefGoogle Scholar

  • 8.

    Centers for Disease Control and Prevention. Heat-related deaths among crop workers – United States, 1992–2006. J Am Med Assoc 2008;300:1017–8.Google Scholar

  • 9.

    British Broadcasting Corporation. India heat deaths exceed 1,000. Available at: http://news.bbc.co.uk/2/hi/south_asia/2956490.stm. Accessed 8 Oct 2012.

  • 10.

    Wyndham C. Assessing the heat stress and establishing the limits for work in a hot mine. Br J Ind Med 1967;24: 255–71.Google Scholar

  • 11.

    Carter R 3rd, Cheuvront S, Williams J, Kolka M, Stephenson L, Sawka M, et al. Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med Sci Sports Exerc 2005;37:1338–44.CrossrefGoogle Scholar

  • 12.

    Mirabelli M, Quandt S, Crain R, Grzywacz J, Robinson E, Vallejos Q, et al. Symptoms of heat illness among Latino farm workers in North Carolina. Am J Prev Med 2010;39:468–71.CrossrefGoogle Scholar

  • 13.

    Jackson L, Rosenberg H. Preventing heat-related illness among agricultural workers. J Agromed 2010;15:200–15.CrossrefGoogle Scholar

  • 14.

    Malhotra M, Venkataswamy Y. Heat casualties in the Indian armed forces. Indian J Med Res 1974;62:1293–302.Google Scholar

  • 15.

    Wyndham C. A survey of the causal factors in heat stroke and of their prevention in the gold mining industry. J S Afr Inst Min Metall 1965;66:125–55.Google Scholar

  • 16.

    Alzeer A, el-Hazmi M, Warsy A, Ansari Z, Yrkendi M. Serum enzymes in heatstroke: prognostic implication. Clin Chem 1997;43:1182–7.Google Scholar

  • 17.

    Becker J, Stewart L. Heat-related illness. Am Fam Physician 2011;83:1325–30.Google Scholar

  • 18.

    Lee-Chiong T Jr, Stitt J. Heatstroke and other heat-related illnesses. The maladies of summer. Postgrad Med 1995;98:26–36.Google Scholar

  • 19.

    Sandor R. Heat illness: on site diagnosis and cooling. Phys Sportsmed 1997;25:35–40.Google Scholar

  • 20.

    Centers for Disease Control and Prevention. Heat-related illness and deaths – United States, 1994–1995. MMWR Morb Mortal Wkly Rep 1995;44:465–8.Google Scholar

  • 21.

    Barrow M, Clark K. Heat-related illnesses. Am Fam Physician 1998;58:749–56, 759.Google Scholar

  • 22.

    Miners A. The diagnosis and emergency care of heat related illness and sunburn in athletes: a retrospective case series. J Can Chiropr Assoc 2010;54:107–17.Google Scholar

  • 23.

    McGeehin M, Mirabelli M. The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ Health Perspect 2001;109(Suppl 2):185–9.CrossrefGoogle Scholar

  • 24.

    Yarbrough B, Vicario S. Rosen’s emergency medicine. Concepts and clinical practice, 5th ed. St. Louis: Mosby, 2002.Google Scholar

  • 25.

    Bouchama A, Knochel J. Medical progress: heat stroke. N Engl J Med 2002;346:1978–88.CrossrefGoogle Scholar

  • 26.

    Weiner J, Horne G. A classification of heat illness. Br Med J 1958;28:1533–5.Google Scholar

  • 27.

    Booker R, Bricknell M. Heat illness – recent developments. J R Army Med Corps 2002;148:11–8.CrossrefGoogle Scholar

  • 28.

    Bricknell M. Heat illness – a review of military experience (Part 1). J R Army Med Corps 1995;141:157–66.CrossrefGoogle Scholar

  • 29.

    Wexler R. Evaluation and treatment of heat related illnessess. Am Fam Physician 2002;65:2307–14.Google Scholar

  • 30.

    Mellion M, Shelton G. Thermoregulation, heat illness, and safe exercise in heat. Philadelphia: Mosby, 1998.Google Scholar

  • 31.

    Auerbach P, Fleisher G, Knochel J. Heatstroke: be ready for summer. Patient Care 1993;27:52–62.Google Scholar

  • 32.

    Sonna L, Sawka M, Lilly C. Exertional heat illness and human gene expression. Prog Brain Res 2007;162:321–46.CrossrefGoogle Scholar

  • 33.

    Canuso A, McLay R, Bennett J, Pyne J, Munoz K, Stenback K. Schizophreniform disorder after heat injury in a military recruit. Psychosomatics 2008;49:345–6.CrossrefGoogle Scholar

  • 34.

    Amorim F, Yamada P, Robergs R, Schneider S, Moseley P. Effects of whole-body heat acclimation on cell injury and cytokine responses in peripheral blood mononuclear cells. Eur J Appl Physiol 2011;111:1609–18.CrossrefGoogle Scholar

  • 35.

    Coris E, Ramirez A, Van Durme D. Heat illness in athletes: the dangerous combination of heat, humidity and exercise. Sports Med 2004;34:9–16.CrossrefGoogle Scholar

  • 36.

    Bröde P, Blazejczyk K, Fiala D, Havenith G, Holmér I, Jendritzky G, et al. The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment. Ind Health 2013;51:16–24.Google Scholar

  • 37.

    Streetz K, Wüstefeld T, Klein C, Manns M, Trautwein C. Mediators of inflammation and acute phase response in the liver. Cell Mol Biol (Noisy-le-grand) 2001;47:661–73.Google Scholar

  • 38.

    Bouchama A. Heatstroke: a new look at an ancient disease. Intensive Care Med 1995;21:623–5.Google Scholar

  • 39.

    Moseley P. Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 1997;83:1413–7.Google Scholar

  • 40.

    Mehta S, Jaswal D. Heat stroke. Med J Armed Forces India 2003;59:140–3.CrossrefGoogle Scholar

  • 41.

    McLaughlin C, Kane A, Auber A. MR imaging of heat stroke: external capsule and thalamic T1 shortening and cerebellar injury. Am J Neuroradiol 2003;24:1372–5.Google Scholar

  • 42.

    Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth 2007;99:4–9.CrossrefGoogle Scholar

  • 43.

    Lambert G. Role of gastrointestinal permeability in exertional heatstroke. Exerc Sport Sci Rev 2004;32:185–90.CrossrefGoogle Scholar

  • 44.

    Dokladny K, Moseley P, Ma T. Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. Am J Physiol Gastrointest Liver Physiol 2006;290:G204–12.Google Scholar

  • 45.

    Treon S, Thomas P, Broitman S. Lipopolysaccharide (LPS) processing by Kupffer cells releases a modified LPS with increased hepatocyte binding and decreased tumor necrosis factor alpha stimulatory capacity. Proc Soc Exp Biol Med 1993;202:153–8.CrossrefGoogle Scholar

  • 46.

    Gathiram P, Gaffin S, Brock-Utne J, Wells M. Time course of endotoxemia and cardiovascular changes in heat-stressed primates. Aviat Space Environ Med 1987;58:1071–4.Google Scholar

  • 47.

    Shibolet S, Coll R, Gilat T, Sohar E. Heatstroke: its clinical picture and mechanism in 36 cases. Q J Med 1967;36: 525–48.Google Scholar

  • 48.

    Erarslan E, Yüksel I, Haznedaroglu S. Acute liver failure due to non-exertional heatstroke after sauna. Ann Hepatol 2012;11:138–42.Google Scholar

  • 49.

    Knochel JP. Exertional rhabdomyolysis. N Engl J Med 1972;287:927–9.CrossrefGoogle Scholar

  • 50.

    Gaffin S, Koratich M, Hubbard R. The effect of hyperthermia on intracellular sodium concentrations of isolated human cells. Ann N Y Acad Sci 1997;813:637–9.Google Scholar

  • 51.

    Sonna L, Gaffin S, Pratt R, Cullivan M, Angel K, Lilly C. Selected contribution: effect of acute heat shock on gene expression by human peripheral blood mononuclear cells. J Appl Physiol 2002;92:2208–20.Google Scholar

  • 52.

    Glazer J. Management of heatstroke and heat exhaustion. Am Fam Physician 2005;71:2133–40.Google Scholar

  • 53.

    Lin P, Lin C, Liu H, Lee M, Lee H, Ho C, et al. Rasburicase improves hyperuricemia in patients with acute kidney injury secondary to rhabdomyolysis caused by ecstasy intoxication and exertional heat stroke. Pediatr Crit Care Med 2011;12:e424–7.CrossrefGoogle Scholar

  • 54.

    Protasi F, Paolini C, Dainese M. Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. J Physiol 2009;587:3095–100.Google Scholar

  • 55.

    Yang H, Hou C, Lin M, Chang C. Attenuating heat-induced acute lung inflammation and injury by dextromethorphan in rats. Am J Respir Cell Mol Biol 2012;46:407–13.CrossrefGoogle Scholar

  • 56.

    Chang CP, Chen SH, Lin MT. Ipsapirone and ketanserin protects against circulatory shock, intracranial hypertension, and cerebral ischemia during heatstroke. Shock 2005;24:336–40.CrossrefGoogle Scholar

  • 57.

    Magalhães F, Passos R, Fonseca M, Oliveira K, Ferreira-Júnior J, Martini A, et al. Thermoregulatory efficiency is increased after heat acclimation in tropical natives. J Physiol Anthropol 2010;29:1–12.CrossrefGoogle Scholar

  • 58.

    Nadel E, Pandolf K, Roberts M, Stolwijk J. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol 1974:37:515–20.Google Scholar

  • 59.

    Nielsen B, Hales J, Strange S, Christensen N, Warberg J, Saltin B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercisein a hot, dry environment. J Physiol 1993;460:467–85.Google Scholar

  • 60.

    Robinson S. Training, acclimatization and heat tolerance. Can Med Assoc J 1967;96:795–800.Google Scholar

  • 61.

    Horowitz M, Kaspler P, Simon E, Gerstberger R. Heat acclimation and hypohydration: involvement of central angiotensin II receptors in thermoregulation. Am J Physiol 1999;277:R47–55.Google Scholar

  • 62.

    Machado-Moreira C, Magalhães F, Vimieiro-Gomes A, Lima N, Rodrigues L. Effects of heat acclimation on sweating during graded exercise until exhaustion. J Therm Biol 2005;30:437–42.CrossrefGoogle Scholar

  • 63.

    Magalhães F, Machado-Moreira C, Vimieiro-Gomes A, Silami-Garcia E, Lima N, Rodrigues L. Possible biphasic sweating response during a short-term heat acclimation protocol for tropical natives. J Physiol Anthropol 2006;25:215–21.CrossrefGoogle Scholar

  • 64.

    Dantzler W. Handbook of physiology: comparative physiology, vol. 1. Bethesda, MD: Oxford University Press, 1997.Google Scholar

  • 65.

    Hellon R, Jones R, Macpherson R, Weiner J. Natural and artificial acclimatization to hot environments. J Physiol 1956;132:559–76.Google Scholar

  • 66.

    Horowitz M, Kodesh E. Molecular signals that shape the integrative responses of the heat-acclimated phenotype. Med Sci Sports Exerc 2010;42:2164–72.CrossrefGoogle Scholar

  • 67.

    Armstrong L, Francesconi R, Kraemer W, Leva N, Deluca J, Hubbard R. Plasma cortisol, renin, and aldosterone during an intense heat acclimation program. Int J Sports Med 1989; 10:38–42.CrossrefGoogle Scholar

  • 68.

    Wyndham C, Benade A, Williams C, Strydom N, Goldin A, Heyns A. Changes in central circulation and body fluid spaces during acclimatization to heat. J Appl Physiol 1968;25:586–93.Google Scholar

  • 69.

    Shapiro Y, Hubbard R, Kimbrough C, Pandolf K. Physiological and hematologic responses to summer and winter dry-heat acclimation. J Appl Physiol 1981;50:92–8.Google Scholar

  • 70.

    Wyndham C, Rogers G, Senay L, Mitchell D. Acclimatization in a hot, humid environment: cardiovascular adjustments. J Appl Physiol 1976;40:779–85.Google Scholar

  • 71.

    Armstrong L. Heat acclimatization. In: Fahey T, editor. Encyclopedia of sports medicine and science. Internet Society for Sport Science: http://sportsci.org, Mar. 10, 1998.

  • 72.

    Horowitz M. Do cellular heat acclimation responses modulate central thermoregulatory activity? News Physiol Sci 1998;13:218–25.Google Scholar

  • 73.

    Thomson M. A comparison between the number and distribution of functioning eccrine sweat glands in Europeans and Africans. J Physiol 1954;123:225–33.Google Scholar

  • 74.

    Kuno Y. Human perspiration. Springfield, IL: Oxford, 1956.Google Scholar

  • 75.

    Schwimmer H, Eli-Berchoer L, Horowitz M. Acclimatory-phase specificity of gene expression during the course of heat acclimation and superimposed hypohydration in the rat hypothalamus. J Appl Physiol 2006;100:1992–2003.CrossrefGoogle Scholar

  • 76.

    Taylor N, Patterson M, Regan J, Amos D. Heat acclimation procedures: preparation for humid heat exposure. Technical report, Director, Aeronautical and Maritime Research Laboratory, 1997.Google Scholar

  • 77.

    Pandolf K. Time course of heat acclimation and its decay. Int J Sports Med 1998;19:S157–60.CrossrefGoogle Scholar

  • 78.

    Saat M, Sirisinghe R, Singh R, Tochihara Y. Decay of heat acclimation during exercise in cold and exposure to cold environment. Eur J Appl Physiol 2005;95:313–20.CrossrefGoogle Scholar

  • 79.

    Weller A, Linnane D, Jonkman A, Daanen H. Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days without exposure to heat stress. Eur J Appl Physiol 2007;102:57–66.CrossrefGoogle Scholar

  • 80.

    Armstrong L, Maresh C. The induction and decay of heat acclimatisation in trained athletes. Sports Med 1991;12:302–12.CrossrefGoogle Scholar

  • 81.

    Wyndham C, Jacobs G. Loss of acclimatization after six days of work in cool conditions on the surface of a mine. J Appl Physiol 1957;11:197–9.Google Scholar

  • 82.

    Adam J, Fox R, Grimby G, Kidd D, Wolff H. Acclimatization to heat and its rate of decay in man. J Physiol 1960;152:26P–7P.Google Scholar

  • 83.

    Williams C, Wyndham C, Morrison J. Rate of loss of acclimation in summer and winter. J Appl Physiol 1967;22:21–6.Google Scholar

  • 84.

    Tetievsky A, Cohen O, Eli-Berchoer L, Gerstenblith G, Stern MD, Wapinski I, et al. Physiological and molecular evidence of heat acclimation memory: a lesson from thermal responses and ischemic cross-tolerance in the heart. Physiol Genomics 2008;34:78–87.CrossrefGoogle Scholar

  • 85.

    Pittet J, Lu L, Geiser T, Lee H, Matthay M, Welch W. Stress preconditioning attenuates oxidative injury to the alveolar epithelium of the lung following haemorrhage in rats. J Physiol 2002:538(Pt 2):583–97.Google Scholar

  • 86.

    Shellman Y, Howe W, Miller L, Goldstein N, Pacheco T, Mahajan R, et al. Hyperthermia induces endoplasmic reticulum-mediated apoptosis in melanoma and non-melanoma skin cancer cells. J Invest Dermatol 2008;128:949–56.CrossrefGoogle Scholar

  • 87.

    Hahn J, Hu Z, Thiele D, Iyer V. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 2004;24:5249–56.CrossrefGoogle Scholar

  • 88.

    Mizzen L, Welch W. Characterization of thermotolerant cell. I. Effects of protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 1988;106:1105–16.CrossrefGoogle Scholar

  • 89.

    Shamovsky I, Nudler E. New insights into the mechanism of heat shock response activation. Cell Mol Life Sci 2008;65: 855–61.CrossrefGoogle Scholar

  • 90.

    Li P, Chao Y, Chan S, Chan J. Potentiation of baroreceptor reflex response by heat shock protein 70 in nucleus tractus solitarii confers cardiovascular protection during heatstroke. Circulation 2001;103:2114–9.CrossrefGoogle Scholar

  • 91.

    Sandström M, Siegler J, Lovell R, Madden L, McNaughton L. The effect of 15 consecutive days of heat-exercise acclimation on heat shock protein 70. Cell Stress Chaperones 2008;13:169–75.CrossrefGoogle Scholar

  • 92.

    Walsh R, Koukoulas I, Garnham A, Moseley P, Hargreaves M, Febbraio M. Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 2000;6:386–93.Google Scholar

  • 93.

    Mayer M, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005;62:670–84.CrossrefGoogle Scholar

  • 94.

    Ben-Zvi A, Goloubinoff P. Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol 2001;135:84–93.Google Scholar

  • 95.

    Slepenkov S, Witt S. The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol Microbiol 2002;45:1197–206.CrossrefGoogle Scholar

  • 96.

    Glover J, Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998;94:73–82.Google Scholar

  • 97.

    Goloubinoff P, Mogk A, Zvi A, Tomoyasu T, Bukau B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 1999;96:13732–7.CrossrefGoogle Scholar

  • 98.

    Proctor CJ, Lorimer IA. Modelling the role of the Hsp70/Hsp90 system in the maintenance of protein homeostasis. PLoS One 2011;6:e22038. DOI: 10.1371/journal.pone.0022038.CrossrefGoogle Scholar

  • 99.

    Yamada P, Amorim F, Moseley P, Robergs R, Schneider S. Effect of heat acclimation on heat shock protein 72 and interleukin-10 in human. J Appl Physiol 2007;103:1196–204.CrossrefGoogle Scholar

  • 100.

    Fehrenbach E, Northoff H. Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 2001;7:66–89.Google Scholar

  • 101.

    McClung J, Hasday J, He J, Montain S, Cheuvront S, Sawka M, et al. Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. Am J Physiol Regul Integr Comp Physiol 2008;294:R185–91.Google Scholar

  • 102.

    Roth E. Nonnutritive effects of glutamine. J Nutr 2008;138:2025S–31S.Google Scholar

  • 103.

    Xue H, Slavov D, Wischmeyer P. Glutamine-mediated dual regulation of heat shock transcription factor-1 activation and expression. J Biol Chem 2012;287:40400–13.CrossrefGoogle Scholar

  • 104.

    Yaglom J, Gabai V, Meriin A, Mosser D, Sherman M. The function of HSP72 in suppression of c-Jun N-terminal kinase activation can be dissociated from its role in prevention of protein damage. J Biol Chem 1999;274:20223–8.CrossrefGoogle Scholar

  • 105.

    Yaqub B, Al-Harthi S, Al-Orainey I, Laajam M, Obeid M. Heat stroke at the Mekkah pilgrimage: clinical characteristics and course of 30 patients. Q J Med 1986;59:523–30.Google Scholar

  • 106.

    Ferris E, Blankenhorn M, Robinson H, Cullen G. Heat stroke: clinical and chemical observations on 44 cases. J Clin Invest 1938;17:249–62.CrossrefGoogle Scholar

  • 107.

    Wyndham C, Strydom N, Cooke H, Maritz J, Morrison J, Fleming P, et al. Methods of cooling subjects with hyperpyrexia. J Appl Physiol 1959;14:771–6.Google Scholar

  • 108.

    Weiner J, Khogali M. A physiological body-cooling unit for treatment of heat stroke. Lancet 1980;i:507–9.CrossrefGoogle Scholar

  • 109.

    Al-Aska A, Abu-Aisha H, Yaqub B, Al-Harthi S, Sallam A. Simplified cooling bed for heatstroke. Lancet 1987;1:381.Google Scholar

  • 110.

    Richards D, Richards R, Schofield P, Ross V, Sutton J. Management of heat exhaustion in Sydney’s The Sun City-to-Surf fun runners. Med J Aust 1979;2:457–61.Google Scholar

  • 111.

    Gagnon D, Lemire BB, Casa DJ, Kenny GP. Cold-water immersion and the treatment of hyperthermia: using 38.6°C as a safe rectal temperature cooling limit. J Athl Train 2010;45:439–44.CrossrefGoogle Scholar

  • 112.

    Reinhold H, Endrich B. Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia 1986;2:111–37.CrossrefGoogle Scholar

  • 113.

    Kampinga H, Dikomey E. Hyperthermicradiosensitization: mode of action and clinical relevance. Int J Radiat Biol 2001;77:399–408.Google Scholar

  • 114.

    Franckena M, Fatehi D, de Bruijne M, Canters R, van Norden Y, Mens J, et al. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer 2009;45:1969–78.Google Scholar

  • 115.

    Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE. Cellular responses to combinations of hyperthermia and radiation. Radiology 1977;123:463–74.Google Scholar

  • 116.

    Van der Zee J. Heating the patient: a promising approach? Ann Oncol 2002;13:1173–84.Google Scholar

  • 117.

    De Wit R, van der Zee J, van der Burg M, Kruit W, Logmans A, van Rhoon G, et al. A phase I/II study of combined weekly systemic cisplatin and locoregional hyperthermia in patients with previously irradiated recurrent carcinoma of the uterine cervix. Br J Cancer 1999;80:1387–91.Google Scholar

  • 118.

    Rietbroek R, Schilthuis M, Bakker P, van Dijk J, Postma A, González González D, et al. Phase II trial of weekly locoregional hyperthermia and cisplatin in patients with a previously irradiated recurrent carcinoma of the uterine cervix. Cancer 1997;79:935–43.CrossrefGoogle Scholar

  • 119.

    Zuchini R, Tsai H, Chen C, Huang C, Huang S, Lee G, et al. Electromagnetic thermotherapy using fine needles for hepatoma treatment. Eur J Surg Oncol 2011;37:604–10.CrossrefGoogle Scholar

  • 120.

    Pandita TK, Pandita S, Bhaumik SR. Molecular parameters of hyperthermia for radiosensitization. Crit Rev Eukaryot Gene Expr 2009;19:235–51.CrossrefGoogle Scholar

  • 121.

    Fuisting B, Richard G. Transpupillary thermotherapy (TTT) – review of the clinical indication spectrum. Medical Laser Application 2010;25:214–22.Google Scholar

  • 122.

    Honma M, Hashimoto M, Iwasaki T, Iinuma S, Takahashi H, Ishida-Yamamoto A, et al. Primary cutaneous anaplastic large cell lymphoma successfully treated with local thermotherapy using pocket hand warmers. J Dermatol 2008;35:748–50.CrossrefGoogle Scholar

  • 123.

    Chalkidou A, Simeonidis K, Angelakeris M, Samaras T, Martinez-Boubeta C, Papazisis K, et al. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. J Magn Magn Mater 2011;323: 775–80.CrossrefGoogle Scholar

  • 124.

    Li D, Tang Y, Zhao L, Geng C, Tang J. Antitumor effect and immune response induced by local hyperthermia in B16 murine melanoma: effect of thermal dose. Oncol Lett 2012;4: 711–8.Google Scholar

  • 125.

    Lauerova L, Dusek L, Simickova M, Kocák I, Vagundová M, Zaloudík J, et al. Malignant melanoma associates with Th1/Th2 imbalance that coincides with disease progression and immunotherapy response. Neoplasma 2002;49:159–66.Google Scholar

  • 126.

    Hayasaka S, Nakamura Y, Kajii E, Ide M, Shibata Y, Noda T, et al. Effects of charcoal kiln saunas (Jjimjilbang) on psychological states. Complement Ther Clin Pract 2008;14:143–8.CrossrefGoogle Scholar

  • 127.

    Masuda A, Nakazato M, Kihara T, Minagoe S, Tei C. Repeated thermal therapy diminishes appetite loss and subjective complaints in mildly depressed patients. Psychosom Med 2005;67:643–7.CrossrefGoogle Scholar

  • 128.

    Masuda A, Koga Y, Hattanmaru M, Minagoe S, Tei C. The effects of repeated thermal therapy for patients with chronic pain. Psychother Psychosom 2005;74:288–94.CrossrefGoogle Scholar

  • 129.

    Dobson R. Lying in a hot tent can ease depression by triggering release of mood chemical. Mail Online UK, 30 July 2012. Available at:http://www.dailymail.co.uk/health/article-2181259/Depression-Lying-hot-tent-ease-depression-triggering-release-mood-chemical.html.

  • 130.

    Kihara T, Biro S, Imamura M, Yoshifuku S, Takasaki K, Ikeda Y, et al. Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. J Am Coll Cardiol 2002;39:754–9.CrossrefGoogle Scholar

  • 131.

    Matsumoto S, Kawahira K, Etoh S, Ikeda S, Tanaka N. Short-term effects of thermotherapy for spasticity on tibial nerve F-waves in post-stroke patients. Int J Biometeorol 2006;50:243–50.CrossrefGoogle Scholar

  • 132.

    Basford J, Oh J, Allison T, Sheffield C, Manahan B, Hodge D, et al. Safety, acceptance, and physiologic effects of sauna bathing in people with chronic heart failure: a pilot report. Arch Phys Med Rehabil 2009;90:173–7.CrossrefGoogle Scholar

  • 133.

    Lepore DA, Knight KR, Anderson RL, Morrison WA. Role of priming stresses and Hsp70 in protection from ischemia-reperfusion injury in cardiac and skeletal muscle. Cell Stress Chaperones 2001;6:93–6.CrossrefGoogle Scholar

  • 134.

    Badgwell Doherty C, Doherty SD, Rosen T. Thermotherapy in dermatologic infections. J Am Acad Dermatol 2010;62: 909–27.CrossrefGoogle Scholar

  • 135.

    Bayata S, Türel Ermertcan A. Thermotherapy in dermatology. Cutan Ocul Toxicol 2012;31:235–40.CrossrefGoogle Scholar

  • 136.

    Reithinger R, Mohsen M, Wahid M, Bismullah M, Quinnell RJ, Davies CR, et al. Efficacy of thermotherapy to treat cutaneous leishmaniasis caused by Leishmaniatropica in Kabul, Afghanistan: a randomized, controlled trial. Clin Infect Dis 2005;40:1148–55.CrossrefGoogle Scholar

  • 137.

    Matsumoto S, Shimodozono M, Etoh S, Miyata R, Kawahira K. Effects of thermal therapy combining sauna therapy and underwater exercise in patients with fibromyalgia. Complement Ther Clin Pract 2011;17:162–6.CrossrefGoogle Scholar

  • 138.

    Lamina S, Hanif S, Gagarawa Y. Short wave diathermy in the symptomatic management of chronic pelvic inflammatory disease pain: a randomized controlled trial. Physiother Res Int 2011:16:50–6.CrossrefGoogle Scholar

  • 139.

    Ruiz-Esparza J. Nonablative radiofrequency for facial and neck rejuvenation. A faster, safer, and less painful procedure based on concentrating the heat in key areas: the ThermaLift concept. J Cosmet Dermatol. 2006;5:68–75.Google Scholar

  • 140.

    Wu Y, Cao Z, Klein W, Luo Y. Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers. Neurobiol Aging 2010;3:1055–8.CrossrefGoogle Scholar

  • 141.

    Li S, Zhou Y, Fan J, Cao S, Cao T, Huang F, et al. Heat shock protein 72 enhances autophagy as a protective mechanism in lipopolysaccharide-induced peritonitis in rats. Am J Pathol 2011;179:2822–34.CrossrefGoogle Scholar

  • 142.

    Watkins A, Cheek D, Harvey A, Blair K, Mitchell J. Heat acclimation and HSP-72 expression in exercising humans. Int J Sports Med 2008;29:269–76.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. Shashi Bala Singh, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, Lucknow Road, New Delhi 110054, India, Phone: +91 11 23883101, E-mail:


Received: 2012-12-22

Accepted: 2013-05-13

Published Online: 2013-06-08

Published in Print: 2013-11-01


Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 24, Issue 4, Pages 209–224, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2012-0080.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nishant Ranjan Chauhan, Medha Kapoor, Laxmi Prabha Singh, Rajinder Kumar Gupta, Ramesh Chand Meena, Rajkumar Tulsawani, Sarita Nanda, and Shashi Bala Singh
Neuroscience, 2017, Volume 358, Page 79
[2]
Edward Walter and Mike Carraretto
Journal of the Intensive Care Society, 2015, Volume 16, Number 3, Page 189
[3]
Joshua H. Guy, Andrew M. Edwards, Catherine M. Miller, Glen B. Deakin, and David B. Pyne
Journal of Sports Sciences, 2016, Page 1
[4]
Hikaru Nakagawa, Takeru Matsumura, Kota Suzuki, Chisa Ninomiya, and Takayuki Ishiwata
Journal of Thermal Biology, 2016, Volume 58, Page 15

Comments (0)

Please log in or register to comment.
Log in