Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph


CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

Online
ISSN
2191-0286
See all formats and pricing
More options …
Volume 25, Issue 2

Issues

Analgesic, anti-inflammatory, and heme biomineralization inhibitory properties of Entada africana ethanol leaf extract with antiplasmodial activity against Plasmodium falciparum

Ifeoma C. Ezenyi
  • Corresponding author
  • Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, Abuja, 900001 Nigeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lalasoanirina Ranarivelo
  • Centre National d’Application de Recherches Pharmaceutiques (CNARP), Antananarivo, 101 Madagascar
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Salawu A. Oluwakanyinsola
  • Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, Abuja, 900001 Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martins Emeje
  • Centre for Nanomedicine and Biophysical Drug Delivery, Advanced Biology/Chemistry Laboratory, National Institute for Pharmaceutical Research and Development, Idu, Abuja, 900001 Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-07 | DOI: https://doi.org/10.1515/jbcpp-2013-0066

Abstract

Background: Entada africana (EA) is a medicinal plant used in West Africa for the treatment of malaria fever, but its efficacy against malaria is yet to be scientifically validated. Our study explores the antimalarial potential of the ethanol leaf extract of EA.

Methods: The antiplasmodial activity of EA against chloroquine-sensitive (HB3) and chloroquine-resistant (FcM29) Plasmodium falciparum was determined as well as its peripheral antinociceptive and anti-inflammatory properties. The effect of the extract on human monocytic (THP-1) cells was recorded as a measure of cytotoxicity, whereas the inhibitory effect on heme detoxification was evaluated as a possible mechanism of antiplasmodial activity.

Results: At a concentration of 100 μg/mL, EA was noncytotoxic and displayed moderate antiplasmodial activity against HB3 and FcM29 (IC50=26.36 and 28.86 μg/mL, respectively). It also exhibited concentration-dependent inhibition of synthetic heme (IC50=16 mg/mL). The extract (200 mg/kg body weight) showed significant (p<0.05) inhibition of paw inflammation, and significantly (p<0.01, 0.05) reduced the number of abdominal writhes induced by acetic acid (58.62%–65.51%), which was higher compared to that of diclofenac (50%, p<0.05).

Conclusions: These findings suggest that peripheral antinociceptive effects and parasiticidal activity of EA contribute to its antimalarial properties and it can be further explored as effective therapy against malaria infection.

Keywords: malaria; medicinal plant; Plasmodium falciparum

References

  • 1.

    Roll Back Malaria. Key malaria facts, 2012. Available at: http://www.rbm.who.int/keyfacts.html. Accessed: 3 May 2013.

  • 2.

    World Health Organization Malaria fact sheet No. 94, 2010. Available at: http://www.who.int/mediacentre/factsheets/fs094/en/index.html. Accessed 1 Apr 2013.

  • 3.

    Ridley RG. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 2002;415:686–93.Google Scholar

  • 4.

    Wangchuk P, Keller PA, Pyne SG, Taweechotipatr M, Tonsomboon A, Rattanajak R, et al. Evaluation of an ethnopharmacologically selected Bhutanese medicinal plants for their major classes of phytochemicals and biological activities. J Ethnopharmacol 2011;137:730–42.Web of ScienceGoogle Scholar

  • 5.

    Diallo D, Paulsen BS, Liljebäck TH, Michaelsen TE. Polysaccharides from the roots of Entada africana Guill. et Perr., Mimosaceae, with complement fixing activity. J Ethnopharmacol 2001;74:159–71.Google Scholar

  • 6.

    Ahua KM, Ioset JR, Ioset KN, Diallo D, Mauël J, Hostettmann K. Antileishmanial activities associated with plants used in the Malian traditional medicine. J Ethnopharmacol 2007;110: 99–104.Web of ScienceGoogle Scholar

  • 7.

    Karou SD, Tchacondo T, Ouattara L, Anani K, Savadogo A, Agbonon A, et al. Antimicrobial, antiplasmodial, haemolytic and antioxidant activities of crude extracts from three selected Togolese medicinal plants. Asian Pac J Trop Med 2011;4:808–13.Web of ScienceGoogle Scholar

  • 8.

    Cioffi G, Dal Piaz F, De Caprariis P, Sanogo R, Marzocco S, Autore G, et al. Antiproliferative triterpene saponins from Entada africana. J Nat Prod 2006;69:1323–9.Google Scholar

  • 9.

    Obidike IC, Emeje MO. Microencapsulation enhances the antiulcerogenic properties of Entada africana leaf extract. J Ethnopharmacol 2011;137:553–61.Web of ScienceGoogle Scholar

  • 10.

    National Institutes of Health. Guide for the care and use of laboratory animals. NIH Publ. No. 86-23, Revised. Bethesda, MD: NIH, 1985.Google Scholar

  • 11.

    Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976;193:673–5.Google Scholar

  • 12.

    Bennett TN, Paguio M, Gligorijevic B, Seudieu C, Kosar AD, Davidson E, et al. Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 2004;48:1807–10.Google Scholar

  • 13.

    Deharo E, García RN, Oporto P, Gimenez A, Sauvain M, Jullian V, et al. A non-radiolabelled ferriprotoporphyrin IX biomineralisation inhibition test for the high throughput screening of antimalarial compounds. Exp Parasitol 2002;100:252–6.Google Scholar

  • 14.

    Ekpendu TO, Akah PA, Adesomoju AA, Okogun JI. Antiinflamatory and antimicrobial activities of Mitracarpus scaber extracts. Int J Pharmacognosy 1994;32:191–6.CrossrefGoogle Scholar

  • 15.

    Vongtau HO, Abbah J, Mosugu O, Chindo BA, Ngazal IE, Salawu AO, et al. Antinociceptive profile of the methanolic extract of Neorautanenia mitis root in rats and mice. J Ethnopharmacol 2004;92:317–24.Google Scholar

  • 16.

    Onyeibor O, Croft SL, Dodson HI, Feiz-Haddad M, Kendrick H, Millington NJ, et al. Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action. J Med Chem 2005;48:2701–9.Google Scholar

  • 17.

    Tibiri A, Rakotonandrasana O, Nacoulma GO, Banzouzi JT. Radical scavenging activity, phenolic content and cytotoxicity of bark and leaves extract of Entada africana Guill. and Perr. (Mimosaceae). J Biol Sci 2007;7:959–63.Google Scholar

  • 18.

    Leed A, DuBay K, Ursos LM, Sears D, De Dios AC, Roepe PD. Solution structures of antimalarial drug-heme complexes. Biochemistry 2002;41:10245–55.Google Scholar

  • 19.

    Garavito G, Rincon J, Arteaga L, Hata Y, Bourdy G, Gimenez A, et al. Antimalarial activity of some Colombian medicinal plants. J Ethnopharmacol 2006;107:460–62.Google Scholar

  • 20.

    Ruiz L, Ruiz L, Maco M, Cobos M, Gutierrez-Choquevilca A-L, Roumy V. Plants used by native Amazonian groups from the Nanay river (Peru) for the treatment of malaria. J Ethnopharmacol 2011;133:917–21.Web of ScienceGoogle Scholar

  • 21.

    Dell’Agli M, Parapini S, Basilico N, Verotta L, Taramelli D, Berry C, et al. In vitro studies on the mechanism of action of two compounds with antiplasmodial activity: ellagic acid and 3,4,5-trimethoxyphenyl- (6′-O-galloyl)-β-d-glucopyranoside. Planta Med 2003;69:162–4.Google Scholar

  • 22.

    Ignatushchenko MV, Winter RW, Bachinger HP, Hinrichs DJ, Riscoe MK. Xanthones as antimalarial agents: studies of a possible mode of action. FEBS Lett 1997;409:67–73.Google Scholar

  • 23.

    Lehane AM, Hayward R, Saliba KJ, Kirk K. A verapamil-sensitive chloroquine-associated H+ leak from the digestive vacuole in chloroquine-resistant malaria parasites. J Cell Sci 2008;121:1624–32.Web of ScienceGoogle Scholar

  • 24.

    Menting J, Tilley L, Deady L, Ng K, Simpson R, Cowman AF, et al. The antimalarial drug, chloroquine, interacts with lactate dehydrogenase from Plasmodium falciparum. Mol Biochem Parasitol 1997;88:215–24.Google Scholar

  • 25.

    Aguiar AC, Santos Rde M, Figueiredo FJ, Cortopassi WA, Pimentel AS, França TC, et al. Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites. PLoS One 2012;7:e37259.Web of SciencePubMedGoogle Scholar

  • 26.

    Hanum PS, Hayano M, Kojima S. Cytokine and chemokine responses in a cerebral malaria-susceptible or -resistant strain of mice to Plasmodium berghei ANKA infection: early chemokine expression in the brain. Int Immunol 2003;15:633–40.CrossrefGoogle Scholar

  • 27.

    Malaguarnera L, Musumeci S. The immune response to Plasmodium falciparum malaria. Lancet Infect Dis 2002;2:472–8.PubMedCrossrefGoogle Scholar

  • 28.

    Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol 2003;225:115–21.Google Scholar

  • 29.

    Bueno L, Fioramonti J. Visceral perception: inflammatory and non-inflammatory mediators. Gut 2002;5:i19–23.CrossrefGoogle Scholar

  • 30.

    Bighetti EJ, Hiruma-Lima CA, Gracioso JS, Souza Brito AR. Anti-inflammatory and antinociceptive effects in rodents of the essential oil of Croton cajucara Benth. J Pharm Pharmacol 1999;51:1447–53.Google Scholar

  • 31.

    Schofield L, Hackett F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 1993;177:145–53.Google Scholar

  • 32.

    Arese P, Schwarzer E. Malarial pigment (hemozoin): a very active ‘inert’ substance. Ann Trop Med Parasitol 1997;91:501–16.Google Scholar

  • 33.

    Jaramillo M, Gowda DC, Radzioch D, Olivier M. Hemozoin increases IFN-α-inducible macrophage nitric oxide generation through ERK- and NF-κB-dependent pathways. J Immunol 2003;171:4243–53.Google Scholar

About the article

Corresponding author: Ifeoma C. Ezenyi, Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, P.M.B. 21, Abuja, 900001 Nigeria, Phone: +234-803-6225293, E-mail:


Received: 2013-05-18

Accepted: 2013-10-03

Published Online: 2013-11-07

Published in Print: 2014-05-01


Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 25, Issue 2, Pages 217–223, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2013-0066.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael Frimpong Baidoo, Evelyn Asante-Kwatia, Abraham Yeboah Mensah, George Henry Sam, and Isaac Kingsley Amponsah
Journal of Applied Research on Medicinal and Aromatic Plants, 2018
[2]
Marie Alfrede Mvondo, Stéphane Minko Essono, Francis Désiré Bomba Tatsinkou, Sylvin Benjamin Ateba, and Dieudonné Njamen
Evidence-Based Complementary and Alternative Medicine, 2017, Volume 2017, Page 1
[3]
Ezenyi Ifeoma Chinwude, Kulkarni Roshan, Joshi Swati, Salawu Oluwakanyinsola Adeola, and Emeje Martins
Asian Pacific Journal of Tropical Biomedicine, 2014, Volume 4, Number 9, Page 707

Comments (0)

Please log in or register to comment.
Log in