Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 25, Issue 4


Sodium valproate, a histone deacetylase inhibitor ameliorates cyclophosphamide-induced genotoxicity and cytotoxicity in the colon of mice

Sabbir Khan
  • Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gopabandhu Jena
  • Corresponding author
  • Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-01-27 | DOI: https://doi.org/10.1515/jbcpp-2013-0134


Background: Cyclophosphamide (CP) is an alkylating anticancer drug used for the treatment of various cancer and noncancer disorders. Toxicity of CP is well characterized using different test systems. However, its intestinal genotoxicity and cytotoxicity are the least explored and the mechanism is not fully investigated. Valproic acid (VPA) has been reported as a histone deacetylase (HDAC) inhibitor, which modulates the cytotoxicity of anticancer drugs. The present study aimed to investigate the influence of VPA on CP-induced genotoxicity and cytotoxicity in the colon of mice.

Methods: In the 16-day experiment, animals were treated with VPA alone (500 mg/kg/day), CP alone (50 mg/kg, on the 4th, 8th, 12th, and 16th days), and the combination of CP and VPA, while in the 28-day experiment, animals were treated with VPA alone (300 mg/kg/day, 5 days/week), CP alone (100 mg/kg/week), and the combination of low and high dose of VPA (VPA150+CP and VPA300+CP). Animals were sacrificed 24 h after the administration of the last dose. The influence of VPA treatment on CP-induced genotoxicity and cytotoxicity was assessed by the evaluation of oxidative stress, DNA damage, histology, and the expression of 8-hydroxy-guanosine and phosphorylated histone H2AX by immunohistochemistry.

Results and conclusions: The present study’s results demonstrated that VPA treatment significantly decreased the CP-induced DNA damage, cytotoxicity, and expression of γH2AX in the colon as revealed by the comet assay and histological as well as immunohistochemical evaluation. VPA treatment significantly ameliorated the CP-induced DNA damage and cytotoxicity in the colon of mice.

Keywords: colon; cyclophosphamide; DNA damage; HDAC inhibitor; sodium valproate


  • 1.

    Anderson D, Bishop JB, Garner RC, Ostrosky-Wegman P, Selby PB. Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks. Mutat Res 1995;330:115–81.Google Scholar

  • 2.

    Ahmed AR, Hombal SM. Cyclophosphamide (cytoxan): a review on relevant pharmacology and clinical uses. J Am Acad Dermatol 1984;11:1115–26.CrossrefPubMedGoogle Scholar

  • 3.

    Hartmann A, Herkommer K, Gluck M, Speit G. DNA-damaging effect of cyclophosphamide on human blood cells in vivo and in vitro studied with the single-cell gel test (comet assay). Environ Mol Mutagen 1995;25:180–7.PubMedCrossrefGoogle Scholar

  • 4.

    Harper-Wynne C, English J, Meyer L, Bower M, Archer C, Sinnett HD, et al. Randomized trial to compare the efficacy and toxicity of cyclophosphamide, methotrexate and 5-fluorouracil (CMF) with methotrexate mitoxantrone (mm) in advanced carcinoma of the breast. Br J Cancer 1999;81:316–22.Google Scholar

  • 5.

    Owari M, Wasa M, Oue T, Nose S, Fukuzawa M. Glutamine prevents intestinal mucosal injury induced by cyclophosphamide in rats. Pediatr Surg Int 2012;28:299–303.Web of SciencePubMedCrossrefGoogle Scholar

  • 6.

    Shathish K, Reena D, Guruvayoorappan C. Chemoprotective effect of decalepis hamiltonii against cyclophosphamide induced toxicity. J Exp Ther Oncol 2012;9:291–301.PubMedGoogle Scholar

  • 7.

    Woo PC, Ng WF, Leung HC, Tsoi HW, Yuen KY. Clarithromycin attenuates cyclophosphamide-induced mucositis in mice. Pharmacol Res 2000;41:527–32.CrossrefPubMedGoogle Scholar

  • 8.

    Carew JS, Giles FJ, Nawrocki ST. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 2008;269:7–17.Google Scholar

  • 9.

    Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 2008;34:206–22.CrossrefWeb of ScienceGoogle Scholar

  • 10.

    Arce C, Perez-Plasencia C, Gonzalez-Fierro A, de la Cruz-Hernandez E, Revilla-Vazquez A, Chavez-Blanco A, et al. A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. PLoS One 2006;1:e98.CrossrefGoogle Scholar

  • 11.

    Kee HJ, Bae EH, Park S, Lee KE, Suh SH, Kim SW, et al. HDAC inhibition suppresses cardiac hypertrophy and fibrosis in DOCA-salt hypertensive rats via regulation of HDAC6/HDAC8 enzyme activity. Kidney Blood Press Res 2013;37: 229–39.Web of ScienceCrossrefGoogle Scholar

  • 12.

    Van Beneden K, Geers C, Pauwels M, Mannaerts I, Verbeelen D, van Grunsven LA, et al. Valproic acid attenuates proteinuria and kidney injury. J Am Soc Nephrol 2011;22:1863–75.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 13.

    Rocca A, Minucci S, Tosti G, Croci D, Contegno F, Ballarini M, et al. A phase I-II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma. Br J Cancer 2009;100:28–36.PubMedCrossrefGoogle Scholar

  • 14.

    Marchion DC, Bicaku E, Daud AI, Sullivan DM, Munster PN. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res 2005;65:3815–22.PubMedCrossrefGoogle Scholar

  • 15.

    Marchion DC, Bicaku E, Daud AI, Sullivan DM, Munster PN. In vivo synergy between topoisomerase ii and histone deacetylase inhibitors: predictive correlates. Mol Cancer Ther 2005;4: 1993–2000.PubMedCrossrefGoogle Scholar

  • 16.

    Hess-Stumpp H. Histone deacetylase inhibitors and cancer: from cell biology to the clinic. Eur J Cell Biol 2005;84:109–21.CrossrefGoogle Scholar

  • 17.

    Dong G, Luo J, Kumar V, Dong Z. Inhibitors of histone deacetylases suppress cisplatin-induced p53 activation and apoptosis in renal tubular cells. Am J Physiol Renal Physiol 2009;298:F293–300.Web of ScienceGoogle Scholar

  • 18.

    Szyf M. The dynamic epigenome and its implications in toxicology. Toxicol Sci 2007;100:7–23.Web of SciencePubMedCrossrefGoogle Scholar

  • 19.

    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008;27:104–19.Web of SciencePubMedGoogle Scholar

  • 20.

    Comalada M, Bailon E, de Haro O, Lara-Villoslada F, Xaus J, Zarzuelo A, et al. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. J Cancer Res Clin Oncol 2006;132:487–97.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 21.

    Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH, et al. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS ONE 2011;6:e16221.Google Scholar

  • 22.

    Arany I, Herbert J, Herbert Z, Safirstein RL. Restoration of CREB function ameliorates cisplatin cytotoxicity in renal tubular cells. Am J Physiol Renal Physiol 2008;294:F577–81.CrossrefWeb of ScienceGoogle Scholar

  • 23.

    Chung YL, Lee MY, Pui NN. Epigenetic therapy using the histone deacetylase inhibitor for increasing therapeutic gain in oral cancer: prevention of radiation-induced oral mucositis and inhibition of chemical-induced oral carcinogenesis. Carcinogenesis 2009;30:1387–97.CrossrefWeb of SciencePubMedGoogle Scholar

  • 24.

    Chung YL, Wang AJ, Yao LF. Antitumor histone deacetylase inhibitors suppress cutaneous radiation syndrome: implications for increasing therapeutic gain in cancer radiotherapy. Mol Cancer Ther 2004;3:317–25.PubMedGoogle Scholar

  • 25.

    Miller AC, Cohen S, Stewart M, Rivas R, Lison P. Radioprotection by the histone deacetylase inhibitor phenylbutyrate. Radiat Environ Biophys 2011;50:585–96.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 26.

    Chong W, Li Y, Liu B, Liu Z, Zhao T, Wonsey DR, et al. Anti-inflammatory properties of histone deacetylase inhibitors: a mechanistic study. J Trauma Acute Care Surg 2012;72:347–54.PubMedWeb of ScienceGoogle Scholar

  • 27.

    Ververis K, Karagiannis TC. Potential non-oncological applications of histone deacetylase inhibitors. Am J Transl Res 2011;3:454–67.PubMedGoogle Scholar

  • 28.

    Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010;2010:1–18.Web of ScienceGoogle Scholar

  • 29.

    Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, et al. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol 2006;176:5015–22.PubMedCrossrefGoogle Scholar

  • 30.

    Hu S, Hou JY, Wang HB, Yang M, Sheng ZY. The effect of valproic acid in alleviating early death in burn shock. Burns 2012;38:83–9.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 31.

    Tripathi DN, Jena GB. Ebselen attenuates cyclophosphamide-induced oxidative stress and DNA damage in mice. Free Radic Res 2008;42:966–77.CrossrefWeb of ScienceGoogle Scholar

  • 32.

    Khan S, Jena GB. Effect of sodium valproate on the toxicity of cyclophosphamide in the testes of mice: influence of pre- and post-treatment schedule. Toxicol Int 2013;70:68–76.Google Scholar

  • 33.

    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–8.CrossrefPubMedGoogle Scholar

  • 34.

    Khan S, Ahmad T, Parekh CV, Trivedi PP, Kushwaha S, Jena G. Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice. Reprod Toxicol 2011;32:385–94.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 35.

    Yoshihara K, Yajima T, Kubo C, Yoshikai Y. Role of interleukin 15 in colitis induced by dextran sulphate sodium in mice. Gut 2006;55:334–41.PubMedCrossrefGoogle Scholar

  • 36.

    Jahromi SR, Togha M, Fesharaki SH, Najafi M, Moghadam NB, Kheradmand JA, et al. Gastrointestinal adverse effects of antiepileptic drugs in intractable epileptic patients. Seizure 2011;20:343–6.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 37.

    Wagner PG, Welton SR, Hammond CM. Gastrointestinal adverse effects with divalproex sodium and valproic acid. J Clin Psychiatry 2000;61:302–3.PubMedCrossrefGoogle Scholar

  • 38.

    Verrotti A, D’Egidio C, Mohn A, Coppola G, Chiarelli F. Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications. Obes Rev 2011;12: e32–43.Web of ScienceCrossrefGoogle Scholar

  • 39.

    Gaspari CN, Guerreiro CA. Modification in body weight associated with antiepileptic drugs. Arq Neuropsiquiatr 2010;68:277–81.CrossrefPubMedGoogle Scholar

  • 40.

    Naziroglu M, Yurekli VA. Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurobiol 2013;33:589–99.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 41.

    Ximenes JC, de Oliveira Goncalves D, Siqueira RM, Neves KR, Santos Cerqueira G, Correia AO, et al. Valproic acid: an anticonvulsant drug with potent antinociceptive and anti-inflammatory properties. Naunyn Schmiedebergs Arch Pharmacol 2013;386:575–87.Web of ScienceCrossrefGoogle Scholar

  • 42.

    Ximenes JC, Verde EC, da Graça Naffah-Mazzacoratti M, de Barros Viana GS. Valproic acid, a drug with multiple molecular targets related to its potential neuroprotective action. Neurosci Med 2012;3:107–23.CrossrefGoogle Scholar

  • 43.

    Kostrouchova M, Kostrouch Z, Kostrouchova M. Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol (Praha) 2007;53:37–49.Google Scholar

  • 44.

    Chen Q, Ouyang DY, Geng M, Xu LH, Zhang YT, Wang FP, et al. Valproic acid exhibits biphasic effects on apoptotic cell death of activated lymphocytes through differential modulation of multiple signaling pathways. J Immunotoxicol 2011;8:210–8.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 45.

    Mah LJ, Orlowski C, Ververis K, Vasireddy RS, El-Osta A, Karagiannis TC. Evaluation of the efficacy of radiation-modifying compounds using gammaH2AX as a molecular marker of DNA double-strand breaks. Genome Integr 2011;2:3.Google Scholar

  • 46.

    Wilson AJ, Holson E, Wagner F, Zhang YL, Fass DM, Haggarty SJ, et al. The DNA damage mark pH2AX differentiates the cytotoxic effects of small molecule HDAC inhibitors in ovarian cancer cells. Cancer Biol Ther 2011;12:484–93.Web of ScienceGoogle Scholar

  • 47.

    Kaneko T, Tahara S, Matsuo M. Non-linear accumulation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidized DNA damage, during aging. Mutat Res 1996;316:277–85.Google Scholar

  • 48.

    Leinonen J, Lehtimaki T, Toyokuni S, Okada K, Tanaka T, Hiai H, et al. New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett 1997;417:150–2.Google Scholar

  • 49.

    Cincarova L, Lochmanova G, Novakova K, Sultesova P, Konecna H, Fajkusova L, et al. A combined approach for the study of histone deacetylase inhibitors. Mol BioSyst 2012;8:2937–45.Web of ScienceCrossrefGoogle Scholar

About the article

Corresponding author: Dr. Gopabandhu Jena, Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062, India, Phone: +91-172-2214683 ext. 2152, Fax: +91-172-2214692, E-mail: ,

Received: 2013-09-11

Accepted: 2013-11-04

Published Online: 2014-01-27

Published in Print: 2014-11-01

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 25, Issue 4, Pages 329–339, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2013-0134.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Gayathri Kanika, Sabbir Khan, and Gopabandhu Jena
Journal of Biochemical and Molecular Toxicology, 2015, Volume 29, Number 8, Page 349
L. Yadav, S. Khan, K. Shekh, and G.B. Jena
Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2014, Volume 770, Page 6

Comments (0)

Please log in or register to comment.
Log in