Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Haim, Abraham / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu


CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

Online
ISSN
2191-0286
See all formats and pricing
More options …
Volume 26, Issue 1

Issues

Neuroprotective effect of N-acetyl cysteine against streptozotocin-induced memory dysfunction and oxidative damage in rats

Atish Prakash / Jaspreet Kaur Kalra / Anil Kumar
  • Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study, Panjab University, Chandigarh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-21 | DOI: https://doi.org/10.1515/jbcpp-2013-0150

Abstract

Background: Growing evidences indicate that endogenous oxidants and antioxidant defense interact in a vicious cycle, which plays a critical role in the pathogenesis of cognitive dysfunction. In this study, we examined the effect of N-acetyl cysteine (NAC) against the intracerebroventricular infusion of streptozotocin (ICV STZ)-induced cognitive impairment and mitochondrial oxidative damage in rats.

Methods: Male adult Wistar rats were injected with STZ (3 mg/kg) bilaterally through ICV. NAC (50 and 100 mg/kg) was administered for 3 weeks post-surgery. The rats were sacrificed on the 21st day following the last behavioral test, and cytoplasmic fractions of the hippocampus and cortex were prepared for the quantification of acetylcholinesterase, oxidative stress parameter, mitochondrial enzymes, inflammatory mediators and caspase-3 activity.

Results: ICV STZ resulted in poor retention of memory in Morris water maze. It also increased the mito-oxidative damage and tumor necrosis factor-α, interleukin 6 and caspase-3 levels in the hippocampus and cortex compared to sham animals. NAC significantly improved memory retention and attenuated oxidative damage parameters, inflammatory markers in STZ-treated rats.

Conclusions: The results of the present study strongly indicate the effectiveness of NAC in preventing cognitive impairment as well as mito-oxidative stress and may be considered as a potential agent in the management of cognitive-related disorders.

Keywords: memory dysfunction; mitochondria; N-acetyl cysteine; oxidative stress; streptozotocin

References

  • 1.

    Massaad CA. Neuronal and vascular oxidative stress in Alzheimer’s disease. Curr Neuropharmacol 2011;9:662–73.CrossrefGoogle Scholar

  • 2.

    Shi Q, Fu J, Ge D, He Y, Ran J, Liu Z, et al. Huperzine A ameliorates cognitive deficits and oxidative stress in the hippocampus of rats exposed to acute hypobaric hypoxia. Neurochem Res 2012;37:2042–52.Web of ScienceCrossrefPubMedGoogle Scholar

  • 3.

    Tillement L, Lecanu L, Papadopoulos V. Alzheimer’s disease: effects of beta-amyloid on mitochondria. Mitochondrion 2011;11:13–21.CrossrefWeb of SciencePubMedGoogle Scholar

  • 4.

    Prakash AK, Kumar A. Effect of chronic treatment of carvedilol on oxidative stress in an intracerebroventricular streptozotocin induced model of dementia in rats. J Pharma Pharmacol 2009;61:1665–72.CrossrefGoogle Scholar

  • 5.

    Landsberg GM, Nichol J, Araujo JA. Cognitive dysfunction syndrome: a disease of canine and feline brain aging. Vet Clin North Am Small Anim Pract 2012;42:749–68.PubMedCrossrefGoogle Scholar

  • 6.

    Calingasan NY, Ho DJ, Wille EJ, Campagna MV, Ruan J, Dumont M, et al. Influence of mitochondrial enzyme deficiency on adult neurogenesis in mouse models of neurodegenerative diseases. Neurosci 2008;153:986–96.Google Scholar

  • 7.

    Gobbo MG, Ribeiro DL, Taboga SR, de Almeida EA, Goes RM. Oxidative stress markers and apoptosis in the prostate of diabetic rats and the influence of vitamin C treatment. J Cell Biochem 2012;113:2223–33.Google Scholar

  • 8.

    Tota S, Awasthi H, Kamat PK, Nath C, Hanif K. Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice. Behav Brain Res 2010;209:73–9.Web of ScienceGoogle Scholar

  • 9.

    Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M. Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacol 2007;52:836–43.CrossrefGoogle Scholar

  • 10.

    Lu H, Zhang DM, Chen HL, Lin YX, Hang CH, Yin HX, et al. N-Acetylcysteine suppresses oxidative stress in experimental rats with subarachnoid hemorrhage. J Clin Neurosci 2009;16:684–8.Web of ScienceCrossrefPubMedGoogle Scholar

  • 11.

    Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, et al. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 2003;84:1173–83.CrossrefGoogle Scholar

  • 12.

    Grosicka-Maciag E, Kurpios-Piec D, Szumilo M, Grzela T, Rahden-Staron I. Protective effect of N-acetyl-L-cysteine against maneb induced oxidative and apoptotic injury in Chinese hamster V79 cells. Food Chem Toxicol 2011;49:1020–5.CrossrefGoogle Scholar

  • 13.

    Wills ED. Mechanisms of lipid peroxide formation in animal tissues. Biochem J 1966;99:667–76.PubMedGoogle Scholar

  • 14.

    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [N-15]-labeled nitrate in biological-fluids. Anal Biochem 1982;126:131–8.Google Scholar

  • 15.

    Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide-dismutase. Arch Biochem Biophys 1978;186:189–95.Google Scholar

  • 16.

    Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82:70–7.CrossrefPubMedGoogle Scholar

  • 17.

    Zahler WL, Cleland WW. A specific and sensitive assay for disulfides. J Biol Chem 1968;243:716–9.Google Scholar

  • 18.

    Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974;249:7130–9.Google Scholar

  • 19.

    Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–90.PubMedCrossrefGoogle Scholar

  • 20.

    Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem 1949;177:751–66.Google Scholar

  • 21.

    Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 1999;73:1127–37.PubMedGoogle Scholar

  • 22.

    King TE, Howard RL. Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. In: Ronald W. Estabrook MEP, editors. Methods in enzymology. PA, USA: Elsevier, Academic Press, 1967:275–94.Google Scholar

  • 23.

    King TE. Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. In: Ronald W. Estabrook MEP, editors. Methods in enzymology. PA, USA: Elsevier, Academic Press,, 1967:322–31.Google Scholar

  • 24.

    Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 1997;69:581–93.PubMedGoogle Scholar

  • 25.

    Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 1967;32:415–38.PubMedCrossrefGoogle Scholar

  • 26.

    Millea PJ. N-Acetylcysteine: multiple clinical applications. Am Fam Physician 2009;80:265–9.PubMedGoogle Scholar

  • 27.

    Arakawa M, Ito Y. N-Acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum 2007;6:308–14.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 28.

    Sherin A, Anu J, Peeyush KT, Smijin S, Anitha M, Roshni BT, et al. Cholinergic and GABAergic receptor functional deficit in the hippocampus of insulin-induced hypoglycemic and streptozotocin-induced diabetic rats. Neuroscience 2012;202:69–76.Web of ScienceGoogle Scholar

  • 29.

    Lee SH, Kim KR, Ryu SY, Son S, Hong HS, Mook-Jung I, et al. Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer’s disease. J Neurosci 2012;32:5953–63.CrossrefGoogle Scholar

  • 30.

    Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res 2011;221:555–63.Web of ScienceGoogle Scholar

  • 31.

    Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 2008;8:1703–18.CrossrefGoogle Scholar

  • 32.

    Orszaghova Z, Ulicna O, Liptakova A, Zitnanova I, Muchova J, Watala C, et al. Effects of N1-methylnicotinamide on oxidative and glycooxidative stress markers in rats with streptozotocin-induced diabetes mellitus. Redox Rep 2012;17:1–7.Web of ScienceGoogle Scholar

  • 33.

    Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 2012;120:419–29.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 34.

    Moran M, Moreno-Lastres D, Marin-Buera L, Arenas J, Martin MA, Ugalde C. Mitochondrial respiratory chain dysfunction: implications in neurodegeneration. Free Radical Biol Med 2012;53: 595–609.Web of ScienceGoogle Scholar

  • 35.

    Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 2012;322:254–62.Google Scholar

  • 36.

    Aliev G, Palacios HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales L. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol 2009;41:1989–2004.Web of ScienceCrossrefPubMedGoogle Scholar

  • 37.

    Tucci P, Cione E, Perri M, Genchi G. All-trans-retinoic acid induces apoptosis in Leydig cells via activation of the mitochondrial death pathway and antioxidant enzyme regulation. J Bioenerg Biomembr 2008;40:315–23.Web of SciencePubMedCrossrefGoogle Scholar

  • 38.

    Snigdha S, Smith ED, Prieto GA, Cotman CW. Caspase-3 activation as a bifurcation point between plasticity and cell death. Neurosci Bull 2012;28:14–24.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 39.

    Vassar R. Caspase-3 cleavage of GGA3 stabilizes BACE: implications for Alzheimer’s disease. Neuron 2007;54:671–3.CrossrefWeb of ScienceGoogle Scholar

  • 40.

    Lee JE, Park JH, Shin IC, Koh HC. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol Appl Pharmacol 2012;263:148–62.Web of ScienceGoogle Scholar

  • 41.

    Kamat PK, Tota S, Shukla R, Ali S, Najmi AK, Nath C. Mitochondrial dysfunction: A crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain. Pharmacol Biochem Behav 2011;100:311–19.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 42.

    Ye L, Wang F, Yang RH. Diabetes impairs learning performance and affects the mitochondrial function of hippocampal pyramidal neurons. Brain Res 2011;1411:57–64.Google Scholar

  • 43.

    Negi G, Kumar A, Sharma SS. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-kappaB and Nrf2 cascades. J Pineal Res 2011;50:124–31.Web of ScienceGoogle Scholar

  • 44.

    Prakash A, Kumar A. Effect of N-acetyl cysteine against aluminium-induced cognitive dysfunction and oxidative damage in rats. Basic Clin Pharmacol Toxicol 2009;105:98–104.Web of ScienceCrossrefPubMedGoogle Scholar

  • 45.

    Choy KH, Dean O, Berk M, Bush AI, van den Buuse M. Effects of N-acetyl-cysteine treatment on glutathione depletion and a short–term spatial memory deficit in 2-cyclohexene-1-one-treated rats. Eur J Pharmacol 2010;649:224–8.Web of ScienceGoogle Scholar

  • 46.

    Aktunc E, Ozacmak VH, Ozacmak HS, Barut F, Buyukates M, Kandemir O, et al. NAC promotes angiogenesis and clearance of free oxygen radicals, thus improving wound healing in an alloxan-induced diabetic mouse model of incisional wound. Clin Exp Dermatol 2010;35:902–9.Web of ScienceCrossrefGoogle Scholar

  • 47.

    Moreira PI, Harris PL, Zhu X, Santos MS, Oliveira CR, Smith MA, et al. Lipoic acid and NAC decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimer’s Dis 2007;12:195–206.Google Scholar

About the article

Corresponding author: Dr. Atish Prakash, PhD, Associate Professor, Pharmacology Division, ISF College of Pharmacy, Moga-142001, Punjab, India, Phone: +919815381443, E-mail:


Received: 2013-10-19

Accepted: 2014-02-27

Published Online: 2014-04-21

Published in Print: 2015-01-01


Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 26, Issue 1, Pages 13–23, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2013-0150.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
David R. Skvarc, Michael Berk, Linda K. Byrne, Olivia M. Dean, Seetal Dodd, Matthew Lewis, Andrew Marriott, Eileen M. Moore, Gerwyn Morris, Richard S. Page, and Laura Gray
Neuroscience & Biobehavioral Reviews, 2017
[2]
Xianzhi Shen, Yanyun Sun, Mengwei Wang, Hui Shu, Li-Juan Zhu, Pei-Yun Yan, Jun-Fang Zhang, and Xinchun Jin
Psychopharmacology, 2017
[3]
J.M. Fine, A.C. Forsberg, B.M. Stroebel, K.A. Faltesek, D.R. Verden, K.A. Hamel, E.B. Raney, J.M. Crow, L.R. Haase, K.E. Knutzen, K.D. Kaczmarczek, W.H. Frey, and L.R. Hanson
Journal of the Neurological Sciences, 2017, Volume 380, Page 164
[4]
Leandro Cattelan Souza, Cristiano R. Jesse, Marcelo Gomes de Gomes, Lucian del Fabbro, André Tiago Rossito Goes, Franciele Donato, and Silvana Peterini Boeira
Neurochemical Research, 2017
[5]
A. Knezovic, A. Loncar, J. Homolak, U. Smailovic, J. Osmanovic Barilar, L. Ganoci, N. Bozina, P. Riederer, and Melita Salkovic-Petrisic
Journal of Neural Transmission, 2017, Volume 124, Number 6, Page 695
[6]
David R. Skvarc, Olivia M. Dean, Linda K. Byrne, Laura Gray, Stephen Lane, Matthew Lewis, Brisa S. Fernandes, Michael Berk, and Andrew Marriott
Neuroscience & Biobehavioral Reviews, 2017, Volume 78, Page 44
[8]
Shilpa Vishwakarma, Rohit Goyal, Varun Gupta, and Kanaya Lal Dhar
Revista Brasileira de Farmacognosia, 2016, Volume 26, Number 4, Page 484
[9]
[10]
Negin Nouraei, Lauren Zarger, Justin N. Weilnau, Jimin Han, Daniel M. Mason, and Rehana K. Leak
Toxicology and Applied Pharmacology, 2016, Volume 296, Page 19
[11]
Pradip K. Kamat, Anuradha Kalani, Shivika Rai, Santosh Kumar Tota, Ashok Kumar, and Abdullah S. Ahmad
Molecular Neurobiology, 2016, Volume 53, Number 7, Page 4548
[12]
Alya Annabi, Ines Bini Dhouib, Aicha Jrad Lamine, Nargès El Golli, Najoua Gharbi, Saloua El Fazâa, and Mohamed Montassar Lasram
Toxicology Mechanisms and Methods, 2015, Volume 25, Number 7, Page 524

Comments (0)

Please log in or register to comment.
Log in