Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph


CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

Online
ISSN
2191-0286
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Influence of extracellular media’s ionic strength on the osmotic stability of Sahel goat erythrocytes

Nanacha Afifi Igbokwe
  • Department of Veterinary Physiology, Pharmacology and Biochemistry, University of Maiduguri, Maiduguri, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ikechukwu Onyebuchi Igbokwe
  • Corresponding author
  • Strategic Animal Research Group, Department of Veterinary Pathology, University of Maiduguri, PO Box 8000, Maiduguri, Nigeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-05 | DOI: https://doi.org/10.1515/jbcpp-2014-0014

Abstract

Background: Heparinised blood was exposed to osmotic lysis in hypotonic buffered saline to evaluate erythrocyte membrane stability. When K3 EDTA blood was used, it added more to the ionic content of blood than heparin. The influence of suspending media’s ionic strength on the osmotic stability of Sahel goat erythrocytes was investigated by replacing the ionic saline with non-ionic saccharide (sucrose or glucose) and assessing the effect of using EDTA blood instead of heparinised blood.

Results: The erythrocyte osmotic fragility curve in saline was hyperbolic even when the ionic concentration was reduced by 50% with saccharides. Haemolysis was higher with EDTA than heparinised blood at saline concentrations of 90 and 150–180 mosmol/L. The fragility curve was sigmoidal and shifted to the left when saline was completely substituted with a saccharide. The non-ionic saccharides increased erythrocyte osmotic resistance linearly (r=0.88; p<0.02) from median to minimal hyposmolarities (150–300 mosmol/L) and reduced the osmolyte concentration at median fragility by 36%. No effect occurred at <30–120 mosmol/L and >90% fragility; and saccharide concentrations were almost non-lytic at comparable saline concentrations evoking <10% haemolysis. Fragilities were neither affected by period (30–60 min) of incubation nor the type of saccharide used.

Conclusions: In this study, the variation in osmotic stability of caprine erythrocytes was linked to ionic strength of the suspending extracellular media which seemed to exert an influence through transmembrane ion fluxes and regulatory volume changes in erythrocytes.

Keywords: buffered saline medium; extracellular media; fragility or resistance; ionic concentration or strength; osmotic stability; saccharide; Sahel goat erythrocytes; sucrose or glucose media

References

  • 1.

    Parpart AK, Lorenz PB, Parpart ER, Gregg JR, Chase AM. The osmotic resistance (fragility) of human red cells. J Clin Invest 1947;26:636–40.CrossrefGoogle Scholar

  • 2.

    Inaba M, Messick JB. Erythrocyte membrane defects. In: Weiss DJ, Wardrop KJ, editors. Schalm’s veterinary hematology, 6th ed. Ames: Blackwell Publishing, 2010:187–95.Google Scholar

  • 3.

    Wright IG. Osmotic fragilty of erythrocytes in acute Babesis argentina and Babesia bigemina infections in splectomized Bos Taurus calves. Res Vet Sci 1973;15:299–305.Google Scholar

  • 4.

    Oyewale JO. Studies on the erythrocyte osmotic fragility of rats infected with Trypanosoma brucei. Anim Technol 1987;38:219–28.Google Scholar

  • 5.

    Mijares A, Vivas J, Abad C, Betancourt M, Piñero S, Proverbio F, et al. Trypanosoma evansi: Effect of experimental infection on the osmotic fragility, lipid peroxidation and calcium-ATPase activity of rat red blood cells. Exp Parasitol 2010;124:301–5.PubMedCrossrefGoogle Scholar

  • 6.

    Kobo PI, Ayo JO, Aluwong T, Zezi AU, Maikai V, Ambali SF. Flavonoid mixture ameliorates increase in erythrocyte osmotic fragility and malondialdehyde concentration induced by Trypanosoma brucei brucei-infection in Wistar rats. Res Vet Sci 2014;96:139–42.Web of ScienceCrossrefPubMedGoogle Scholar

  • 7.

    Silva IM, Hubsch C, Ysern-Caldentey M. Erythrocyte osmotic fragility and cation concentrations during experimentally induced bovine anaplasmosis. Comp Biochem Physiol Part A: Physiol 1989;94:455–9.CrossrefGoogle Scholar

  • 8.

    Jain NC. Essentials of veterinary hematology. Philadelphia: Lea and Febiger, 1989:203–6.Google Scholar

  • 9.

    Lessler MA, Walters MI. Erythrocyte osmotic fragility in the presence of lead or mercury. Exp Biol Med 1973;142:548–53.CrossrefGoogle Scholar

  • 10.

    Seeman P, Weinstein J. Erythrocyte membrane stabilization by tranquilizers and antihistamines. Biochem Pharmacol 1966;15:1737–52.CrossrefGoogle Scholar

  • 11.

    Seeman P, Kwant WO, Sauks T, Argent W. Membrane expansion of intact erythrocytes by anesthtics. Biochim Biophys Acta 1969;183:490–8.PubMedCrossrefGoogle Scholar

  • 12.

    Bilto YY. Rheological action of aspirin on human erythrocytes. Clin Hemorrheol Microcirc 1990;20:159–65.Google Scholar

  • 13.

    Ambali SF, Ayo JO, Ojo SA, Esievo KA. Ameliorative effect of vitamin C on chlorpyrifos-induced increased erythrocyte fragility in Wistar rats. Hum Exp Toxicol 2010;30:19–24.Web of SciencePubMedGoogle Scholar

  • 14.

    Perk K, Frei YF, Herz A. Osmotic fragility of red blood cells of young and mature domestic and laboratory animals. Am J Vet Res 1964;25:1241–8.Google Scholar

  • 15.

    Bogin E, Massry SG, Levi J, Djaldeti M, Bristol G, Smith J. Effect of parathyroid hormone on osmotic fragility of human erythrocytes. J Cin Invest 1982;69:1017–25.CrossrefGoogle Scholar

  • 16.

    Oyewale JO, Durotoye LA. Osmotic fragility of erythrocytes of two breeds of domestic fowl in the warm humid tropics. Lab Anim 1998;22:250–4.Google Scholar

  • 17.

    Oladele SB, Ayo JO, Ogundipe SO, Esievo KA. Seasonal and species variations in erythrocytes osmotic fragility of indigenous poultry species in Zaria, Northern Guinea Savannah zone of Nigeria. Poult Sci 2003;56:1842–6.Google Scholar

  • 18.

    Penha-Silva N, Firmino CB, Reis FG, Huss JC, Souza TM, Freitas MV, et al (2007) Influence of age on the stability of human erythrocyte membranes. Mech Ageing Dev 2007;128:444–9.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Yucel R, Ozdemir S, Dariyel N, Toplan S, Akyolku MC, Yigit G. Erythrocyte osmotic fragility and lipid peroxidation in experimental hyperthyroidism. Endocrine 2009;36:498–502.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 20.

    Oyewale JO. Osmotic fragility of erythrocytes of West African Dwarf sheep and goats: effects of temperature and pH. Br Vet J 1991;147:163–70.Google Scholar

  • 21.

    Oyewale JO. Effect of storage of blood on the osmotic fragility of mammalian erythrocytes. J Vet Med A 1993;40:258–64.CrossrefGoogle Scholar

  • 22.

    Oyewale JO, Okewumi TO, Olayemi FO. Haematological changes in West African Dwarf goats following haemorrhage. J Vet Med A 1997;44:619–24.CrossrefGoogle Scholar

  • 23.

    Kafka M, Yermiahu T. The effect of EDTA as an anticoagulant on the osmotic fragility of erythrocytes. Clin Lab Haematol 1998;20:213–6.PubMedCrossrefGoogle Scholar

  • 24.

    Mafuvadze B, Erlwanger KH. The effect of EDTA, heparin and storage on the erythrocyte osmotic fragility, plasma osmolality and haematocrit of adult ostriches (Struthio camelus). Vet arhiv 2007;77:427–34.Google Scholar

  • 25.

    Fourie FR. Effects of anticoagulants on the hematocrit, osmolarity and pH of avian blood. Bull Anim Hlth Prod Afr 1997;51:204–14.Google Scholar

  • 26.

    Mafuvadze B, Nyanungo M, Saina H, Gorejena B, Mashayamombe T, Erlwanger KH. Deprivation of drinking water for up to 48 h does not affect the osmotic fragility of erythrocytes from captive helmeted guinea fowl (Numida meleagris). Int J Poult Sci 2008;7:59–63.Google Scholar

  • 27.

    Viscor G, Palomeque J. Method of determing the osmotic fragility curves of erythrocytes in birds. Lab Anim 1982;16:48–50.CrossrefGoogle Scholar

  • 28.

    Jandl JH. Leaky red cells Blood 1965;26:367–82.PubMedGoogle Scholar

  • 29.

    Woodward CB, Zwaal RF. The lytic behaviour of pure phospholipases A2 and C towards osmotically swollen erythrocytes and resealed ghosts. Bichim Biophys Acta 1972;274:272–8.CrossrefGoogle Scholar

  • 30.

    Bowdler AJ, Chan TK. The time course of red cell lysis in hyptonic electrolyte solutions. J Physiol 1969;201:437–52.CrossrefGoogle Scholar

  • 31.

    Winter WP. Mechanism of saponin-induced red cell hemolysis: Evidence for the involvement of aquaporin CHIP28. Blood 1994;84:(Suppl 1–10):[abstract 445].Google Scholar

  • 32.

    Roelofsen B, Zwaal RF, Comfurius P, Woodward CB, Van Deenen LL. Action of pure phospholipase A2 and phospholipase C on human erythrocytes and ghosts. Biochim Biophys Acta 1971;241:925–9.Google Scholar

  • 33.

    Greene NM. Glucose permeability of human erythrocytes and effects of inhalation anesthetics, oxygen and carbon dioxide. Yale J Biol Med 1965;37:319–30.PubMedGoogle Scholar

  • 34.

    Guarner V, Alvarez-Buylla R. Erythrocyte and glucose homeostasis in rats. Diabetes 1989;38:410–5.PubMedCrossrefGoogle Scholar

  • 35.

    Travis SF, Morrison AD, Clements RS, Winegrad AI, Oski FA. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway. J Clin Invest 1971;50:2105–12.Google Scholar

  • 36.

    Traykov TT, Jain RK. Effect of glucose and galactose on red blood cell membrane deformability. Int J Microcirc Clin Exp 1987;6:35–44.PubMedGoogle Scholar

  • 37.

    Matsuzawa T, Ikarashi Y. Haemolysis of various mammalian erythrocytes in sodium chloride, glucose and phosphate-buffer solutions. Lab Anim 1979;13:329–31.PubMedCrossrefGoogle Scholar

  • 38.

    Lemos GS, Márquez-Bernardes LF, Arvelos LR, Paraíso LF, Penha-Silva N. Influence of glucose concentration on the membrane stability of human erythrocytes. Cell Biochem Biophys 2011;61:531–7.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 39.

    Schalm OW, Jain NC, Caroll EJ. Veterinary hematology, 3rd ed. Philadelphia: Lea and Fabiger, 1975.Google Scholar

  • 40.

    Glaji YA, Mani AU, Igbokwe IO. Relationship of faecal egg count with packed cell volume and anaemia in Sahel sheep and goats in semi-arid northeastern Nigeria. Comp Clin Pathol 2013. doi 10.1007/s00580-013-1762-0. [Epub ahead of print 30 May 2013].CrossrefGoogle Scholar

  • 41.

    Ochei J, Kolhatkar A. Medical laboratory science theory and practice. New Delhi: Tata McGraw-Hill Publishing Company Limited, 2007:322.Google Scholar

  • 42.

    Cossins AR, Gibson JS. Volume-sensitive transport system and volume homeostasis in vertebrate red blood cells. J Exp Biol 1997;200:343–52.Google Scholar

  • 43.

    Lang F, Busch GL, Ritter M, Voèlkl H, Waldegger S, Gulbins E, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998;78:247–306.PubMedGoogle Scholar

  • 44.

    LaCelle PL, Rothstein A. The passive permeability of red blood cell to cations. J Gen Physiol 1966;50:171–88.CrossrefPubMedGoogle Scholar

  • 45.

    Cueff A, Seear R, Dyrda A, Bouyer G, Egée S, Esposito A, et al. Effect of elevated intracellular calcium on the osmotic fragility of human red blood cells. Cell Calcium 2010; 47:29–36.Web of ScienceCrossrefGoogle Scholar

  • 46.

    Davson H. Studies on the permeability of erythrocytes. VI.The effect of reducing the salt content of the medium surrounding the cell. Biochem J 1939;33:389–401.Google Scholar

  • 47.

    Zeidler RB, Kim HD. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells. J Cell Physiol 1979;100:551–62.CrossrefPubMedGoogle Scholar

  • 48.

    Kregenow FM. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence of a volume-controlling mechanism. J Gen Physiol 1971;58:372–95.PubMedCrossrefGoogle Scholar

  • 49.

    Russell JM. Sodium-potassium-chloride cotransport. Physiol Rev 2000;80:211–76.PubMedGoogle Scholar

  • 50.

    Lowenstein LM. The effect of albumin on osmotic hemolysis. Exp Cell Res 1960;20:56–65.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Ikechukwu Onyebuchi Igbokwe, Strategic Animal Research Group, Department of Veterinary Pathology, University of Maiduguri, PO Box 8000, Maiduguri, Nigeria, Phone: +234 834811622, E-mail:


Received: 2014-02-14

Accepted: 2014-06-04

Published Online: 2014-08-05

Published in Print: 2015-03-01


Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 26, Issue 2, Pages 171–179, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2014-0014.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nanacha Afifi Igbokwe and Ikechukwu Onyebuchi Igbokwe
Journal of Basic and Clinical Physiology and Pharmacology, 2016, Volume 27, Number 2
[2]
N. A. Igbokwe, N. A. Ojo, and I. O. Igbokwe
Comparative Clinical Pathology, 2016, Volume 25, Number 1, Page 15

Comments (0)

Please log in or register to comment.
Log in