Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 26, Issue 2


l-Carnitine is a calcium chelator: a reason for its useful and toxic effects in biological systems

Saleem Ali Banihani
  • Corresponding author
  • Department of Medical Laboratory Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mekki Bayachou / Karem Alzoubi
  • Faculty of Pharmacy, Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-19 | DOI: https://doi.org/10.1515/jbcpp-2014-0016


Background: Investigation of the direct link between l-carnitine (LC), a quaternary ammonium compound that facilitates the passage of unsaturated fatty acids into the mitochondrial matrix, and free calcium (Ca2+) is needed to explain a number of varying results obtained from different in vitro and in vivo studies of LC as a supplement.

Methods: The chemical structure of LC, which contains oxygen ligand atoms, prompted to measure its activity as a Ca2+ chelator. The measurement was carried out spectrophotometrically by measuring the reduction in the formation of Ca2+-o-cresolphthalein complexone (Ca-CPC) in the presence of different doses of LC (0.075, 0.75, and 7.5 mM) compared to the control (0.0 mM LC).

Results: The effect of LC was measured as a free entity in solution and when added to human serum. Our results showed a significant decrease (p<0.05) in the average absorbance of Ca-CPC in the presence of LC compared to the control.

Conclusions: In conclusion, LC exhibits a significant Ca2+ chelating activity. As Ca2+ is vital in the biochemical and physiological processes of living cells, LC could be affecting the calcium-dependent biological systems by limiting the levels of free Ca2+. Examples include decelerating the blood clotting process, amplifying the effect of anticoagulants, reducing nitric oxide synthase activity, inhibiting platelet aggregation, and decreasing sperm motility.

Keywords: anticoagulants; blood clotting; calcium chelating; l-carnitine (LC); nitric oxide synthase (NOS); platelet aggregation; palmitoyl-l-carnitine; sperm motility


  • 1.

    Bach AC. Carnitine in human nutrition. Z Ernahrungswiss 1982;21:257–65.PubMedCrossrefGoogle Scholar

  • 2.

    Steiber A, Kerner J, Hoppel CL. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med 2004;25:455–73.PubMedCrossrefGoogle Scholar

  • 3.

    Silva-Adaya D, Perez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernández J, Binienda Z, et al. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine. J Neurochem 2008;105:677–89.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Apak R, Guclu K, Ozyurek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 2004;52:7970–81.CrossrefPubMedGoogle Scholar

  • 5.

    Vanella A, Russo A, Acquaviva R, Campisi A, Di Giacomo C, Sorrenti V, et al. L-propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell Biol Toxicol 2000;16:99–104.PubMedCrossrefGoogle Scholar

  • 6.

    Gulcin I. Antioxidant and antiradical activities of L-carnitine. Life Sci 2006;78:803–11.PubMedCrossrefGoogle Scholar

  • 7.

    Yuan YV, Carrington MF, Walsh NA. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 2005;43:1073–81.CrossrefPubMedGoogle Scholar

  • 8.

    Lindsay R. Food additives. In: Fennema OR, editor. Food chemistry. New York: Marcel Dekker Inc., 1996.Google Scholar

  • 9.

    Devlin T. Textbook of biochemistry with clinical correlations, 7th ed. Hoboken: Wiley, 2011.Google Scholar

  • 10.

    Weiss HJ, Lages B. Platelet prothrombinase activity and intracellular calcium responses in patients with storage pool deficiency, glycoprotein IIb-IIIa deficiency, or impaired platelet coagulant activity – a comparison with Scott syndrome. Blood 1997;89:1599–611.PubMedGoogle Scholar

  • 11.

    Mathur A, Zhong D, Sabharwal AK, Smith KJ, Bajaj SP. Interaction of factor IXa with factor VIIIa. Effects of protease domain Ca2+ binding site, proteolysis in the autolysis loop, phospholipid, and factor X. J Biol Chem 1997;272:23418–26.Google Scholar

  • 12.

    Hakeshzadeh F, Tabibi H, Ahmadinejad, Malakoutian T, Hedayati M. Effects of L-Carnitine supplement on plasma coagulation and anticoagulation factors in hemodialysis patients. Ren Fail 2010;32:1109–14.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 13.

    Pignatelli P, Lenti L, Sanguigni V, Frati G, Simeoni I, Gazzaniga PP, et al. Carnitine inhibits arachidonic acid turnover, platelet function, and oxidative stress. Am J Physiol Heart Circ Physiol 2003;284:H41–8.Google Scholar

  • 14.

    Bachmann HU, Hoffmann A. Interaction of food supplement L-carnitine with oral anticoagulant acenocoumarol. Swiss Med Wkly 2004;134:385.PubMedGoogle Scholar

  • 15.

    Nei M, Ngo L, Sirven JI, Sperling MR. Ketogenic diet in adolescents and adults with epilepsy. Seizure 2014. (doi: 10.1016/j.seizure.2014.02.015).PubMedCrossrefWeb of ScienceGoogle Scholar

  • 16.

    De Vivo DC, Bohan TP, Coulter DL, Dreifuss FE, Greenwood RS, Nordli DR Jr, et al. L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia 1998;39:1216–25.Google Scholar

  • 17.

    Kossoff EH, Zupec-Kania BA, Rho JM. Ketogenic diets: an update for child neurologists. J Child Neurol 2009;24:979–88.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 18.

    Bergqvist AG, Schall JI, Stallings VA, Zemel BS. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr 2008;88:1678–84.CrossrefWeb of SciencePubMedGoogle Scholar

  • 19.

    Berry-Kravis E, Booth G, Sanchez AC, Woodbury-Kolb J. Carnitine levels and the ketogenic diet. Epilepsia 2001;42:1445–51.Google Scholar

  • 20.

    Koeck T, Kremser K. l-Carnitine alters nitric oxide synthase activity in fibroblasts depending on the peroxisomal status. Int J Biochem Cell Biol 2003;35:149–56.PubMedCrossrefGoogle Scholar

  • 21.

    Hong CY, Chiang BN, Wu P, Wei YH, Fong JC. Involvement of calcium in the caffeine stimulation of human sperm motility. Br J Clin Pharmacol 1985;19:739–43.CrossrefPubMedGoogle Scholar

  • 22.

    Brokaw CJ. Regulation of sperm flagellar motility by calcium and cAMP-dependent phosphorylation. J Cell Biochem 1987;35:175–84.PubMedCrossrefGoogle Scholar

  • 23.

    Magnus O, Abyholm T, Kofstad J, Purvis K. Ionized calcium in human male and female reproductive fluids: relationships to sperm motility. Hum Reprod 1990;5:94–8.PubMedGoogle Scholar

  • 24.

    Fakih H, MacLusky N, DeCherney A, Wallimann T, Huszar G. Enhancement of human sperm motility and velocity in vitro: effects of calcium and creatine phosphate. Fertil Steril 1986;46:938–44.PubMedGoogle Scholar

  • 25.

    Meseguer M, Garrido N, Martinez-Conejero JA, Simon C, Pellicer A, Remohi J. Relationship between standard semen parameters, calcium, cholesterol contents, and mitochondrial activity in ejaculated spermatozoa from fertile and infertile males. J Assist Reprod Genet 2004;21:445–51.CrossrefPubMedGoogle Scholar

  • 26.

    Banihani S, Sharma R, Bayachou M, Sabanegh E, Agarwal A. Human sperm DNA oxidation, motility and viability in the presence of l-carnitine during in vitro incubation and centrifugation. Andrologia 2012;44:505–12.CrossrefWeb of ScienceGoogle Scholar

  • 27.

    Deana R, Rigoni F, Francesconi M, Cavallini L, Arslan P, Siliprandi N. Effect of l-carnitine and l-aminocarnitine on calcium transport, motility, and enzyme release from ejaculated bovine spermatozoa. Biol Reprod 1989;41:949–55.PubMedCrossrefGoogle Scholar

  • 28.

    Stapleton S, Currie R, Scott R, Bell B. Palmitoyl-DL-carnitine has calcium-dependent effects on cultured neurones from rat dorsal root ganglia. Br J Pharmacol 1992 207:1192–7.Google Scholar

  • 29.

    Patel MK, Economides AP, Byrne NG. Effects of palmitoyl carnitine on perfused heart and papillary muscle. J Cardiovasc Pharmacol Ther 1999;4:85–96.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Saleem Ali Banihani, MSc, PhD, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan, Phone: +962-27201000 Ext. 23874, Fax: +962-2-7201087, E-mail:

Received: 2014-02-19

Accepted: 2014-05-05

Published Online: 2014-07-19

Published in Print: 2015-03-01

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 26, Issue 2, Pages 141–145, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2014-0016.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

L. Mongioi, A. E. Calogero, E. Vicari, R. A. Condorelli, G. I. Russo, S. Privitera, G. Morgia, and S. La Vignera
Andrology, 2016, Volume 4, Number 5, Page 800

Comments (0)

Please log in or register to comment.
Log in