Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph


CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

Online
ISSN
2191-0286
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Considering space weather forces interaction on human health: the equilibrium paradigm in clinical cosmobiology – is it equal?

Eliyahu Stoupel
  • Corresponding author
  • Sackler Faculty of Medicine, Division of Cardiology Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-22 | DOI: https://doi.org/10.1515/jbcpp-2014-0059

Abstract

Background: We are constantly affected by changes in space weather. The principal “players” are solar activity (SA), geomagnetic activity (GMA) and antagonistic to them, cosmic ray activity (CRA) and high energy proton flux. CRA is measured by neutron activity on the earth’s surface in imp/min. SA and GMA are linked and serve as a shield for the earth from CRA. For a long time SA and GMA were the main areas of studies. The aim of this study was to compare some effects of the mentioned forces and discuss the temporal distribution of both groups of space weather, in relation to their effects on humans.

Methods: The time distribution of GMA storms (daily) was compared with quiet (low) GMA, with higher CRA (neutron activity). Space weather data were obtained from the USA, Russia and Finland.

Results: A total of 4383 days were analyzed in the years 2000–2012. A total of 71 days (1.62%) of geomagnetic storms (GS) and 2753 days (63.8%) of quiet (I0) GMA were registered. A second study was provided including the years 1983–2007 (9131 days); here 3800 days (41.62%) were quiet GMA days and 400 storm days (4.38%). According to publications in the medical literature, many phenomena are connected with the extremes of space weather.

Conclusions: Despite a great number of publications and the significant role of GS, it is a relatively rare event and most medical emergencies and deaths occur on days of low GMA, accompanied by higher CRA (neutron activity). High neutron activity deserves more attention when analyzing space effects on human health and their mechanism of action.

Keywords: activity; cardio-vascular; cosmic ray; geomagnetic; morbidity; mortality; neutron; oncology; solar

References

  • 1.

    Chizhevski AL. Terreastrial echos of solar storms, 2nd ed. Moscow: Mislj’ Press, 1976:419.Google Scholar

  • 2.

    Barnothy MF. Biological effects of magnetic fields. New York: Plenum Press, 1964.Google Scholar

  • 3.

    Rozhdestvenskaya E, Novikova K. Influence of solar activity on the blood fibrinolytic system. Klin Med (Moscow) 1969;47:65–9.Google Scholar

  • 4.

    Ganelina IE. Sudden deaths in acute myocardial infarction and problems of reanimation. Klin Med (Moscow) 1969;11:111–9.Google Scholar

  • 5.

    Oranevski VN, Breus TK, Baevski RM, Rapoport SI, Petrov VM, Barsukova ZhV, et al. Effect of geomagnetic activity on the functional status of the body. Biofizika 1998;43:819–26.Google Scholar

  • 6.

    Gurfinkel YI, Liubimov VV, Orajevskij VN, Parfenova IM, Yurjev AS. The influence of geomagnetic disturbances on capillary flow in ischemic heart disease patients. Biofizika 1995;4:793–9.Google Scholar

  • 7.

    Stoupel E. Forecasting in cardiology. New York, Toronto, Jerusalem: John Wiley & Sons, Israel University Press, 1976:141.Google Scholar

  • 8.

    Stoupel E. Solar-terrestrial prediction: aspects for preventive medicine. In: Donnelly RF, editor. Solar-terrestrial predictions proceedings, vol. 4. Boulder, CO: US NOAA, Space Environment Laboratory, 1980:G29–G40.Google Scholar

  • 9.

    Dimitrova S, Stoilova I, Cholakov I. Influence of local geomagnetic storms on arterial blood pressure. Bioelectromagnetics 2004;25:408–14.PubMedCrossrefGoogle Scholar

  • 10.

    Gurfinkel JI. Ischemic heart disease and solar activity. Moscow: Elf-3, 2004:170pp.Google Scholar

  • 11.

    Stoupel E, Abramson E, Domarkiene S, Shimshoni M, Sulkes J. Space proton flux and the temporal distribution of cardiovascular deaths. Int J Biometeorol 1997;40:113–6.PubMedCrossrefGoogle Scholar

  • 12.

    Vencloviene J, Babarskiene R, Kaminskaite B, Vasiliauskas D. The effect of solar-geomagnetic activity during hospital admissions on the prognosis of cardiovascular outcomes in patients with myocardial infarction. Br J Med Med Res 2013;3:1587–97.CrossrefGoogle Scholar

  • 13.

    Rapoport SI, Shatalova AM. Magnetic storm is a course of disadaptation in patients with hypertonic disease. In: Space weather: effects on human health and biological systems. Proceedings of International Workshop, Moscow, February 17–18, 2005:114. Russian Academy of Sciences, Joint Stock Company “Russian Railways”.Google Scholar

  • 14.

    Atkov OJ, Rogoza AI, Riabinkina G, Breus TK, Rapoport SI. Geomagnetic activity effects by cardiac patients. In: Space weather: effects on human health and biological systems. Proceedings of International Scientific Workshop, Moscow, February 17–18, 2005:14–5. Russian Academy of Sciences, Joint Stock Company “Russian Railways”.Google Scholar

  • 15.

    Kuritzky A, Zoldan Y, Hering R, Stoupel E. Geomagnetic activity and severity of the migraine attack. Headache 1987;27:87–9.PubMedCrossrefGoogle Scholar

  • 16.

    Bartsch H, Bartsch C, Mecke D, Lippert TH. Seasonality of pineal melatonin production in the rat: possible synchronization by the geomagnetic field. Chronobiol Int 1994;11:21–6.CrossrefPubMedGoogle Scholar

  • 17.

    Stoupel E. Space weather and timing of cardiovascular events: clinical cosmobiology. Saarbruken, Germany: Lambert Academic Publishing, 2012:72pp.Google Scholar

  • 18.

    Dorman LI. Cosmic rays as a factor and as a tool for forecasting of space weather effects on the biosphere. In: Grigoriev AI, Zeeleny LM, editors. Space weather effects on humans in space and on earth: proceedings of the International Conference, Moscow, June 4–8, 2012:92–109. Moscow: Space Research Institute Russian Academy of Sciences, 2013.Google Scholar

  • 19.

    Miroshnichenko LI. Cosmic rays and evolution of biosphere: search for new approaches. In: Grigorjev AI, Zeleny LM, editors. Space weather effects on humans in space and on earth. Proceedings of International Conference, Moscow, June 4–8, 2012:110–36. Moscow: Space Research Institute Russian Academy of Sciences, 2013.Google Scholar

  • 20.

    Stoupel E, Kalediene R, Petrauskiene J, Domarkiene S, Radishauskas R, Abramson E, et al. Three kinds of cosmophysical activity – links to temporal distribution of deaths and occurrence of acute myocardial infarction. Med Sci Monit 2004;10: CR-80–4.Google Scholar

  • 21.

    Stoupel E, Israelevich P, Petrauskiene J, Kalediene R, Abramson E, Sulkes J. Cosmic ray activity and monthly number of deaths: a correlative study. J Basic Clin Physiol Pharmacol 2002;13:23–32.Google Scholar

  • 22.

    Stoupel E, Israelevich P, Kusniec J, Mazur A, Zabarski R, Golovchiner G, et al. Are neutrons involved in the pathogenesis of life-threatening cardiac arrhythmias? J Basic Clin Physiol Pharmacol 2006;17:55–62.Google Scholar

  • 23.

    Stoupel E, Domarkiene S, Radishauskas R, Abramson E, Israelevich P, Sulkes J. Neutrons and sudden cardiac death (SCD)-codes 121-125 ICD 10. J Basic Clin Physiol Pharmacol 2006;17:45–53.Google Scholar

  • 24.

    Stoupel E, Tamoshiunas A, Radishauskas R, Bernotiene G, Abramson E, Israelevich P. Acute myocardial infarction (AMI) (n-11026) on days of zero geomagnetic activity (GMA) and the following week: differences at months of maximal and minimal solar activity (SA) in solar cycles 23 and 24. J Basic Clin Physiol Pharmacol 2012;23:5–9.Google Scholar

  • 25.

    Stoupel E, Babayev ES, Abramson E, Sulkes J. Calm geomagnetic conditions, increased cosmic ray activity and dynamics of some medical events at the descending phase of solar activity cycle. Heliophysical phenomena and Earth environment: IHY-ISWI Regional Meeting, September 7–13, 2009. Shibelnik, Croatia: Abstract Book.Google Scholar

  • 26.

    Stoupel E. The equilibrium paradigm in clinical cosmobiology. J Basic Clin Physiol Pharmacol 2002;13:255–61.Google Scholar

  • 27.

    Stoupel E. Atherothrombosis: environmental links. J Basic Clin Physiol Pharmacol 2008;19:37–47.Google Scholar

  • 28.

    Stoupel E, Tamoshiunas A, Radishauskas R, Bernotiene G, Abramson E, Israelevich P. Neutrons and the plaque: AMI (n-8920) at days of zero GMA/high neutron activity (n-36) and the following days and week. Kaunas, Lthuania, 2000–2007. J Clin Experiment Cardiol 2011;2:121–5.Google Scholar

  • 29.

    Preliminary Report and Forecast of Solar Geophysical Data – The Weekly. NOAA-SESC (now SWPC), USAF. Available at: http:/www.sec.noaa.Gov/weekly.html.

  • 30.

    Solar Indices Bulletin (monthly). NOAA, National Geophysical Data Center, USA.Google Scholar

  • 31.

    Geomagnetic Indices Bulletin (monthly). NOAA, National Geophysical Center, USA.Google Scholar

  • 32.

    Cosmic Data, monthly review, IZMIRAN, Russian Academy of Sciences.Google Scholar

  • 33.

    Neutron Monitoring Data (daily, monthly, yearly). Moscow Neutron Monitoring Station, Russian Academy of Sciences.Google Scholar

  • 34.

    Neutron Monitoring Data (daily, monthly, yearly). Oulu University, Finland.Google Scholar

  • 35.

    National Space Science Data Center Bulletin. Greenbelt, MD: Goddard National Space Flight Center (Internet Data, monthly).Google Scholar

  • 36.

    Heckman G, editor. Glossary of solar-terrestrial terms. Boulder,CO: NOAA, Space Environment Services Center, 1988, revised 1992:68.Google Scholar

  • 37.

    Stoupel E, Babayev E, Mustafa F, Abramson E, Israelevich P, Sulkes J. Acute myocardial infarction occurrence: environmental links – Baku 2003–2005 data. Med Sci Monit 2007;13:BR175–9.Google Scholar

  • 38.

    Stoupel E, Domarkiene S, Radishauskas R, Bernotiene G, Abramson E, Israelevich P, et al. Links between monthly rates of four types of acute myocardial infarction and their corresponding cosmophysical activity parameters. J Basic Clin Physiol Pharmacol 2004;15:175–84.Google Scholar

  • 39.

    Stoupel E, Assali A, Teplitzky I, Israelevich P, Abramson E, Sulkes J, et al. The culprit artery in acute myocardial infarction in different environmental physical activity levels. Int J Cardiol 2008;126:288–90.PubMedCrossrefGoogle Scholar

  • 40.

    Stoupel E, Abramson E, Israelevich P. Left anterior descending/right coronary arteries as culprit arteries in acute myocardial infarction (n-2011) in changing physical environment, percutaneous coronary intervention data (2000–2010). J Basic Clin Physiol Pharmacol 2011;22:91–6.Google Scholar

  • 41.

    Stoupel E, Kusniec J, Mazur A, Abramson E, Israelevich P, Strasberg B. Timing of life-threatening arrhythmias detected by implantable cardioverter-defibrillators in relation to changes in cosmophysical factors. Cardiol J 2008;15:437–40.PubMedGoogle Scholar

  • 42.

    Stoupel E, Domarkiene S, Radishauskas R, Abramson E, Sulkes J. Sudden cardiac death and geomagnetic activity: links to age, gender and agony time. J Basic Clin Physiol Pharmacol 2002;13:23–33.Google Scholar

  • 43.

    Stoupel E, Kusniec J, Golovchiner G, Abramson E, Strasberg B. Association of time of occurrence of electrical heart storms with environmental physical activity. Pacing Clin Electrophysiol 2014;37:1067–70.PubMedCrossrefGoogle Scholar

  • 44.

    Stoupel E, Domarkiene S, Radishauskas R, Abramson E. Bastille day event and sudden cardiac death. Semin Cardiol 2002;8:18–21.Google Scholar

  • 45.

    Stoupel E, Kalediene R, Petrauskiene J, Starkuviene S, Abramson E, Israelevich P, et al. Twenty years study of solar, geomagnetic, cosmic ray activity links with monthly deaths number (n-850304). J Biomed Sci Eng 2011;4:1–9.Google Scholar

  • 46.

    Stoupel E, Joshua H, Lahav J. Human blood coagulation parameters and geomagnetic activity. Eur J Int Med 1996;7:217–20.Google Scholar

  • 47.

    Stoupel E, Abramson E, Israelevich P, Sulkes J, Harell D. Dynamics of serum C-reactive protein (CRP) and cosmophysical activity. Eur J Int Med 2007;18:124–8.CrossrefGoogle Scholar

  • 48.

    Stoupel E. Effect of geomagnetic activity on cardiovascular parameters. Biomed Pharmacother 2002;56:246s–56s.Google Scholar

  • 49.

    Stoupel E, Zabludovsky M, Wittenberg C, Boner G. Ambulatory blood pressure monitoring in patients with hypertension on days of high and low geomagnetic activity. Int J Hypertens 1998;39:293–4.Google Scholar

  • 50.

    Stoupel E, Domarkiene S, Radishauskas R, Abramson E, Sulkes J. Deaths from ischemic and hemorrhagic stroke on days of different levels of geomagnetic activity (GMA). Semin Cardiol 2003;9:46–51.Google Scholar

  • 51.

    Stoupel E, Tamoshiunas A, Radishauskas R, Bernotiene G, Abramson E, Sulkes J, et al. Acute myocardial infarction (AMI) and intermediate coronary syndrome (ICS). Health 2010;2:129–32.Google Scholar

  • 52.

    Stoupel E. Gene functional dynamics: environment as a trigger? J Basic Clin Physiol Pharmacol 2014;25:138–42.Google Scholar

  • 53.

    Nias AH. An introduction to radiotherapy. New York: John Wiley & Sons 1998, reprinted 2000.Google Scholar

  • 54.

    Hall EJ, GIaccia AJ. Radiotherapy for radiologists. Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Tokyo: Lippincott and Wilkins & Williams, 2006.Google Scholar

About the article

Corresponding author: Eliyahu Stoupel, MD, PhD, DSc, Sackler Faculty of Medicine, Division of Cardiology Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel, E-mail:


Received: 2014-05-16

Accepted: 2014-10-22

Published Online: 2014-11-22

Published in Print: 2015-03-01


Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 26, Issue 2, Pages 147–151, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2014-0059.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Eliyahu Stoupel, Radishauskas Richardas, Vaichiulis Vidmantas, Bernotiene Gailute, Tamoshiunas Abdonas, and Abramson Evgeny
Health, 2016, Volume 08, Number 05, Page 402

Comments (0)

Please log in or register to comment.
Log in