Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Wissenschaftlicher Beirat: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph


CiteScore 2017: 1.28

SCImago Journal Rank (SJR) 2017: 0.342
Source Normalized Impact per Paper (SNIP) 2017: 0.524

Online
ISSN
2191-0286
Alle Formate und Preise
Weitere Optionen …
Band 26, Heft 3

Hefte

Physiological characteristics of crab Portunus sanguinolentus egg mass extract from southeast coast of India

Subramanian Bragadeeswaran
  • Korrespondenzautor
  • Assistant Professor, Faculty of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Nadarajah Sri Kumaran
  • Department of Marine Biotechnology, AMET University, Kannathur, Chennai-603112, India
  • Faculty of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Lakshmanan Pandimuthu / Rajagopal Prabahar
  • Faculty of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 25.11.2014 | DOI: https://doi.org/10.1515/jbcpp-2013-0133

Abstract

Background: The present investigation was undertaken to evaluate the physiological characteristics of crab egg mass (Portunus sanguinolentus) crude extract.

Methods: Assays were followed by standard methods.

Results: A maximum of 256 hemolytic units (HU) and a minimum of 128 HU were found in chicken and goat erythrocytes. In an antimicrobial assay, Salmonella paratyphi and Aspergillus niger showed most susceptibility (8.0 mm and 13.0 mm) against n-butanol extracts. In the tail flick method, 5.33±0.19* AR the maximum analgesic response was recorded 30 min after the administration of crude extract (150 mg kg–1). In the hot plate method, 5.13±0.13* AR maximum paw licking was recorded 15 min after the administration of crude extract (150 mg kg–1). In an anti-inflammatory assay, 0.31±0.23* anti-inflammatory response and inhibition of paw edema 39.22% were observed 1 h after the administration of crude extract (250 mg kg–1). Primary structural groups gained through Fourier transformed infrared (FTIR) analysis peaks were observed and assigned as amide groups I (1517.81–1633.12 cm–1), II (1446.58–1517.81 cm–1) and III (1342.47–1406.85 cm–1).

Conclusions: The results indicate that crab egg masses have remarkable antimicrobial, hemolytic and cytotoxic activities.

Keywords: analgesic; antibacterial; antifungal; anti-inflammatory; crab egg mass; hemolytic

References

  • 1.

    Iwanaga S, Lee BL. Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 2005;38:128–50.PubMedCrossrefGoogle Scholar

  • 2.

    Hancock RE, Brown KL, Mookherjee N. Host defence peptides from invertebrates emerging antimicrobial strategies. Immunobiology 2006;211:315–22.PubMedCrossrefGoogle Scholar

  • 3.

    Arrieta MC, Leskiw BK, Kaufman WR. Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae). Exp Appl Acarol 2006;39:297–13.CrossrefPubMedGoogle Scholar

  • 4.

    Fernando SA, Fernando OJ. A field guide to the common invertebrates of the east coast of India. Centre of Advanced Study in Marine Biology, Annamalai University, 2002:63.Google Scholar

  • 5.

    Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 1976;72:248–54.CrossrefGoogle Scholar

  • 6.

    Bragadeeswaran S, Ganesan K, Sri Kumaran N. Hemolytic activities from ascidian Polyclinum madrasensis Sebestian, 1952 and Phallusia nigra Savigny, 1816 from Tuticorin coast of India. Asian J Appl Sci 2011;4:630–9.Google Scholar

  • 7.

    Meyer BN, Ferrigi NR, Putnam JE, Jacobson LB, Nicolas DE, Mclaughin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 1982;45:31–4.CrossrefGoogle Scholar

  • 8.

    Laouer H, Meriem EK, Parado S, Baldovini N. An antibacterial and antifungal phenylpropanoid from Carum montaum (Coss. et Dur.) Benth. et Hook. Phytother Res 2009;23:1726–30.PubMedCrossrefGoogle Scholar

  • 9.

    National Committee for Clinical Laboratory Standards. Method for antifungal disk diffusion susceptibility testing in yeasts. Approved guideline M-44-A. Wayne, PA: CLSI/National Committee for Clinical Laboratory Standards, 2006;M100-S16.Google Scholar

  • 10.

    Al-Ali A, Alkhawajah A, Randhawa MA, Shaikh NA. Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J Ayub Med Coll Abbotabad 2008;20:25–7.Google Scholar

  • 11.

    Miller LC, Tainter ML. Estimation of LD50 and its error by means of log-probit graph paper. Proc Soc Exp Bio Med 1944;57:261–4.CrossrefGoogle Scholar

  • 12.

    Sutha D, Azadeh SE, Sabariah I, Surash R, Mun FY. Evaluation of the antinociceptive activity and acute oral toxicity of standardized ethanolic extract of the rhizome of Curcuma xanthorrhiza Roxb. Molecules 2010;15:2925–34.Web of ScienceGoogle Scholar

  • 13.

    Jung HJ, Song YS, Lim CJ, Park EH. Anti-inflammatory, anti-angiogenic and anti-nociceptive activities of an ethanol extract of Salvia plebeia R. Brown. J Ethnopharmacol 2009;126:355–60.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 14.

    Thangaraj S, Bragadeeswaran S. Assessment of biomedical and pharmacological activities of sea anemones Stichodactyla mertensii and Stichodactyla gigantea from Gulf of Mannar Biosphere Reserve, southeast coast of India. J Venom Anim Toxins incl Trop Dis 2012;18:53–61.Google Scholar

  • 15.

    Sri Kumaran N, Bragadeeswaran S, Balasubramanian T, Meenakshi VK. Bioactivity potential of extracts from ascidian Lissoclinum fragile. Afr J Pharmacy Pharmacol 2012;6:1854–9.Web of ScienceGoogle Scholar

  • 16.

    Hussain SM, Ananthan G, Sivaperumal P. Exploration of cytotoxic potential from marine ascidians Trididemnum clinides and Trididemnum savignii. J Pharmacy Res 2011;4:2032–3.Google Scholar

  • 17.

    Prasath Sankar P. Bioactive potential of sea urchin Temnopleurus toreumaticus from Devanampattinam, southeast coast of India. MSc thesis, Annamalai University, 2011.Google Scholar

  • 18.

    Stewart JE, Zwicker BM. Natural and induced bactericidal activities in the hemolymph of the lobster; Homarus americanus: product of hemocyte-plasma interactions. Can J Microbiol 1972;18:1499–509.CrossrefGoogle Scholar

  • 19.

    Benkendorff K, Bremner JB, Davis AR. Tyrian purple precursors in the egg masses of the Australian muricid Dicathais orbita: a possible defensive role. J Chem Ecol 2000;26:1037–50.CrossrefGoogle Scholar

  • 20.

    Veeruraj A, Ravichandran S, Rameshkumar G. Antibacterial activity of crab haemolymph on clinical pathogens. Trends Appl Sci Res 2008;3:174–81.Google Scholar

  • 21.

    Gopalakrishnan S, Meenakshi VK, Shanmuga Priya D. Antipyretic and analgesic activity of Phallusia nigra, Savigny, 1816. Ann Biol Res 2011;2:192–6.Google Scholar

  • 22.

    Neves SA, Freitas AL, Sousa BW, Rocha ML, Correia MV, Sampaio DA, et al. Antinociceptive properties in mice of lectin isolated from the marine alga Amansia multifida Lamouroux. J Braz Med Biol Res 2007;40:127–34.Web of ScienceCrossrefGoogle Scholar

  • 23.

    Suganthi K, Bragadeeswaran S, Sri Kumaran N, Thangaraj S, Balasubramanian T. Biological and pharmacological activities of jelly fish Crambionella stuhalmanni (Chun, 1896) and Chrysaora quinquecirrha (Desor, 1848). J Pharm Pharm Sci 2011;3:230–6.Google Scholar

  • 24.

    Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev 2009;29:767–20.CrossrefPubMedGoogle Scholar

  • 25.

    Dang HT, Lee HJ, Yoo ES, Shinde PB, Lee YM, Hong J, et al. Anti-inflammatory constituents of the red alga Gracilaria verrucosa and their synthetic analogues. J Nat Prod 2008;71: 232–40.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 26.

    Park YK, Rasmussen HE, Ehler SJ, Blobaum KR, Lu F, Schlegel VL, et al. Repression of proinflammatory gene expression by lipid extract of Nostoc commune var sphaeroides Kutzing, a blue-green alga, via inhibition of nuclear factor-kappaB in RAW 264.7 macrophages. Nutr Res 2008;28:83–91.Web of ScienceGoogle Scholar

  • 27.

    Hussein G, Sankawa U, Gato H, Matsumoto K, Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 2006;69:443–9.CrossrefPubMedGoogle Scholar

Artikelinformationen

Corresponding author: Dr. Subramanian Bragadeeswaran, Assistant Professor, Faculty of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India, Phone: +91-4144-243223, Ext: 269, Fax: +91-4144-243555, Mobile: +91-9894823364, E-mail:


Erhalten: 10.09.2013

Angenommen: 21.10.2014

Online erschienen: 25.11.2014

Erschienen im Druck: 01.05.2015


Quellenangabe: Journal of Basic and Clinical Physiology and Pharmacology, Band 26, Heft 3, Seiten 265–273, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2013-0133.

Zitat exportieren

©2015 by De Gruyter.Get Permission

Kommentare (0)