Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 26, Issue 3


Attenuating effect of standardized lyophilized Cinnamomum zeylanicum bark extract against streptozotocin-induced experimental dementia of Alzheimer’s type

Jai Malik / Kavita Munjal / Rahul Deshmukh
Published Online: 2014-10-10 | DOI: https://doi.org/10.1515/jbcpp-2014-0012


Background: The Cinnamomum zeylanicum (CZ; family Lauraceae) bark, an important spice, has also been used traditionally for nervous stress, as a nervine tonic, and as a stimulant. Therefore, the present study was designed to evaluate the effect of the standardized lyophilized aqueous extract of CZ bark (LCZE) on learning and memory in rodents at 50, 100, and 200 mg/kg, p.o. dose levels against streptozotocin (STZ)-induced memory impairment.

Methods: LCZE was standardized based on the cinnamaldehyde content using high-performance thin-layer chromatography (HPTLC). The effect on learning and memory was evaluated using two widely used behavioral models, the Morris water maze (MWM) test and the object recognition test (ORT). The effect of LCZE on the acetylcholinesterase (AChE) activity and oxidative stress parameters in the cerebral cortex and hippocampus of rat brain was also evaluated.

Results: LCZE significantly (p<0.05) and dose-dependently attenuated STZ-induced cognitive deficit in both models in comparison to only STZ-treated animals. In the MWM test, LCZE (100 and 200 mg/kg) significantly decreased the transfer latency and increased the time spent by the animals in target quadrant. Similarly in the ORT, the LCZE-treated animals exhibited an improved discrimination between a familiar object and a novel object, indicating the reversal of STZ-induced memory impairment. LCZE also restored STZ-induced alteration in AChE activity and oxidative stress parameters in both brain parts.

Conclusions: The results clearly indicate toward the memory-enhancing effect of LCZE, which could be due to the synergistic effect of anti-AChE and antioxidant activities.

Keywords: acetylcholinesterase; Dalchini; dementia; object recognition; oxidative stress


  • 1.

    Barceloux DG. Medical toxicology of natural substances: foods, fungi, medicinal herbs, toxic plants, and venomous animals. Hoboken: John Wiley & Sons, 2008.Google Scholar

  • 2.

    Jain SK, Tarafdar CR. Medicinal plant-lore of the santals (a revival of P. O. Bodding’s work). Econ Bot 1970;24:241–78.CrossrefGoogle Scholar

  • 3.

    Krishna S, Kamath HR, Kudva KT, Kudva KG. Cinnamon leaf oil. J Sci Ind Res 1946;4:464–6.Google Scholar

  • 4.

    Hsieh PC. Antimicrobial effect of cinnamon extract. J Agric Chem Food Sci 2000;38:184–93.Google Scholar

  • 5.

    John D. One hundred useful raw drugs of the Kani tribes of Trivandrum Forest Division, Kerala, India. Int J Crude Drug Res 1984;22:17–39.Google Scholar

  • 6.

    Banerjee AK, Banerjee I. A survey of the medicinal plants in Shevaroy hills. J Econ Taxon Bot 1986;8:271–90.Google Scholar

  • 7.

    Nisha MC, Rajeshkumar S. Survey of crude drugs from Coimbatore city. Indian J Natl Prod Res 2010;1:376–83.Google Scholar

  • 8.

    Pushpangadan P, Atal CK. Ethnomedical and ethnobotanical investigations among some schedule caste communities of Travancore, Kerala, India. J Ethnopharmacol 1986;16:175–90.CrossrefGoogle Scholar

  • 9.

    Jha PK, Choudhary RS, Choudhary SK. Studies of medicinal plants of Palamau (Bihar)-(IInd Part). Biojournal 1997;9:21–38.Google Scholar

  • 10.

    Jadeja BA, Odedra NK, Baraiya NM. Herbal drugs used by the people of Saurashtra region of Gujarat for different types of fever. Plant Arch 2005;5:517–24.Google Scholar

  • 11.

    Rong L, Tao L, Lingyuan X, Yongwen L, Shijun Z, Xiaoqun D. Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, high-fat diet and its underlying mechanism. Food Chem Toxicol 2013;51:419–25.Web of ScienceGoogle Scholar

  • 12.

    Qin B, Panickar KS, Anderson RA. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J Diabetes Sci Technol 2010;4:685–93.Google Scholar

  • 13.

    Chericoni S, Prieto JM, Iacopini P, Cioni P, Morelli I. In vitro activity of the essential oil of Cinnamomum zeylanicum and eugenol in peroxynitrite-induced oxidative processes. J Agric Food Chem 2005;53:4762–5.CrossrefPubMedGoogle Scholar

  • 14.

    Gruenwald J, Freder J, Armbruester N. Cinnamon and health. Crit Rev Food Sci Nutr 2010;50:822–34.CrossrefPubMedGoogle Scholar

  • 15.

    Singh G, Maurya S, Delampasona MP, Catalan CA. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol 2007;45:1650–61.Web of SciencePubMedCrossrefGoogle Scholar

  • 16.

    Senanayake UM, Edwards RA, Lee TH. Cinnamon. Food Technol Aust 1976;28:333–8.Google Scholar

  • 17.

    Variyar PS, Bandyopadhyay C. On chemical aspects of Cinnamomum zeylanicum. Pafai J 1989;11:35–8.Google Scholar

  • 18.

    Variyar PS, Bandyopadhyay C. Chemical investigation of some commonly used spices. Aryavaidyan 1993;6:262–7.Google Scholar

  • 19.

    Jayaprakasha GK, Rao LJ. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit Rev Food Sci Nutr 2011;51:547–62.Web of ScienceCrossrefPubMedGoogle Scholar

  • 20.

    Jayaprakasha GK, Ohnishi-Kameyama M, Ono H, Yoshida M, Rao LJ. Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity. J Agric Food Chem 2006;54:1672–9.CrossrefPubMedGoogle Scholar

  • 21.

    Sonkusare SK, Srinivasan K, Kaul C, Ramarao P. Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. Life Sci 2005;77:1–14.CrossrefPubMedGoogle Scholar

  • 22.

    Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long term diminution in learning and memory abilities and cerebral energy metabolism in adult rats. Behav Neurosci 1998;112:1190–208.Google Scholar

  • 23.

    Saxena G, Singh SP, Pal R, Singh S, Pratap R, Nath C. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochem Behav 2007;86:797–805.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 24.

    Grunblatt E, Koutsilieri E, Hoyer S, Riederer P. Gene expression alterations in brain areas of intracerebroventricular streptozotocin treated rat. J Alzheimer’s Dis 2006;9:261–71.Google Scholar

  • 25.

    Salkovic-Petrisic M. Amyloid cascade hypothesis: is it true for sporadic Alzheimer’s disease? Period Biol 2008;110:17–25.Google Scholar

  • 26.

    Gopu CL, Aher S, Mehta H, Paradkar AR, Mahadik KR. Simultaneous determination of cinnamaldehyde, eugenol and piperine by HPTLC densitometric method. Phytochem Anal 2008;19:116–21.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 27.

    Sharma M, Gupta YK. Effect of chronic treatment of melatonin on learning, memory and oxidative deficiencies induced by intracerebroventricular streptozotocin in rats. Pharmacol Biochem Behav 2001;70:325–31.CrossrefPubMedGoogle Scholar

  • 28.

    Sharma V, Bala A, Deshmukh R, Bedi KL, Sharma PL. Neuroprotective effect of RO-20-1724-a phosphodiesterase4 inhibitor against intracerebroventricular streptozotocin induced cognitive deficit and oxidative stress in rats. Pharmacol Biochem Behav 2012;101:239–45.Web of ScienceGoogle Scholar

  • 29.

    Sharma N, Deshmukh R, Bedi KL. SP600125, a competitive inhibitor of JNK attenuates streptozotocin induced neurocognitive deficit and oxidative stress in rats. Pharmacol Biochem Behav 2010;96:386–94.PubMedWeb of ScienceGoogle Scholar

  • 30.

    Tailang M, Gupta BK, Sharma A. Antidiabetic activity of alcoholic extract of Cinnamomum zeylanicum leaves in alloxan induced diabetic rats. People’s J Sci Res 2008;1:9–11.Google Scholar

  • 31.

    Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol 2006;104:119–23.PubMedCrossrefGoogle Scholar

  • 32.

    Bertiana-Anglade V, Drieu-La-Rochelle C, Mocaer E, Seguin L. Memory facilitating effect of aglomelatine in the novel object recognition memory paradigm in rat. Pharmacol Biochem Behav 2011;98:511–7.Web of ScienceGoogle Scholar

  • 33.

    Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. Behav Brain Res 1988;31:47–59.PubMedCrossrefGoogle Scholar

  • 34.

    Malik J, Kumar M, Deshmukh R, Kumar P. Ameliorating effect of lyophilized extract of Butea frondosa leaves on scopolamine-induced amnesia in rats. Pharm Biol 2013;51:233–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • 35.

    Lowry OH, Roseburgh NJ, Farr AL, Randal RL. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:205–15.Google Scholar

  • 36.

    Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.PubMedCrossrefGoogle Scholar

  • 37.

    Wills ED. Mechanism of lipid peroxide formation in animal. Biochem J 1996;99:667–76.Google Scholar

  • 38.

    Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82:70–4.CrossrefPubMedGoogle Scholar

  • 39.

    Deshmukh R, Sharma v, Mehan S, Sharma N, Bedi KL. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vincopectin – a PDE1 inhibitor. Eur J Pharmacol 2009;620:49–56.Web of SciencePubMedCrossrefGoogle Scholar

  • 40.

    Law A, Gauthier S, Qurion L. Say no to Alzheimer’s disease: the putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res Rev 2001;35:73–96.CrossrefGoogle Scholar

  • 41.

    Baluchnejadmojarad T, Roghani M. Effect of naringenin on intracerebroventricular streptozotocin-induced cognitive deficits in rats. Pharmacology 2006;78:193–7.CrossrefPubMedGoogle Scholar

  • 42.

    Agrawal R, Tyagi E, Shukla R, Nath C. A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 2009;56:779–87.Web of ScienceCrossrefPubMedGoogle Scholar

  • 43.

    Gupta A, Bisht B, Dey CS. Peripheral insulin-sensitizer metformin ameliorates neuronal insulin resistance and Alzheimer’s-like changes. Neuropharmacology 2011;60:910–20.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 44.

    Campos EO, Alvarez A, Inestrosa NC. Brain acetylcholinesterase promotes amyloid beta peptide aggregation but does not hydrolyze amyloid precursor protein peptides. Neurochem Res 1998;23:135–40.PubMedCrossrefGoogle Scholar

  • 45.

    Francis PT, Nordberg A, Arnold SE. A preclinical view of cholinesterase inhibitors in neuroprotection: do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol Sci 2005;26:104–11.CrossrefGoogle Scholar

  • 46.

    Peterson DW, George RC, Scaramozzino F, LaPointe NE, Anderson RA, Graves DJ, et al. Cinnamon extract inhibits tau aggregation associated with Alzheimer’s disease in vitro. J Alzheimer’s Dis 2009;17:585–7.Google Scholar

  • 47.

    Mancini-Filho J, Van-Koiij A, Mancini DA, Cozzolino FF, Torres RP. Antioxidant activity of cinnamon (Cinnamomum zeylanicum, Breyne) extracts. Boll Chim Farmaceut 1998;137:443–7.Google Scholar

  • 48.

    Kamath JV, Rana AC, Chowdhury AR. Prohealing effect of Cinnamomum zeylanicum bark. Phytother Res 2003; 17:970–2.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. Jai Malik, Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab-142001, India, E-mail:

aPresent address: University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India.

Received: 2014-02-13

Accepted: 2014-08-04

Published Online: 2014-10-10

Published in Print: 2015-05-01

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 26, Issue 3, Pages 275–285, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2014-0012.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mehnaz Kamal, Mamuna Naz, Talha Jawaid, and Muhammad Arif
Oriental Pharmacy and Experimental Medicine, 2019
Fatemeh Niknezhad, Sara Sayad-Fathi, Arezoo Karimzadeh, Marjan Ghorbani-Anarkooli, Fatemeh Yousefbeyk, and Ebrahim Nasiri
Anatomy & Cell Biology, 2019, Volume 52
Pallavi Kawatra and Rathai Rajagopalan
Pharmacognosy Research, 2015, Volume 7, Number 5, Page 1
Khaled Bellassoued, Ferdaws Ghrab, Houda Hamed, Rim Kallel, Jos van Pelt, Amina Lahyani, Fatma Makni Ayadi, and Abdelfattah El Feki
Applied Physiology, Nutrition, and Metabolism, 2019, Volume 44, Number 6, Page 606
Zomorrod Ataie, Hossein Mehrani, Asghar Ghasemi, and Khadijeh Farrokhfall
Journal of Functional Foods, 2019, Volume 52, Page 545
Mosaad A. Abdel-Wahhab, Aziza A. El-Nekeety, Nabila S. Hassan, Abdullah A. Y. Gibriel, and Khaled G. Abdel-Wahhab
Environmental Science and Pollution Research, 2018
Mahyar Dorri, Shirin Hashemitabar, and Hossein Hosseinzadeh
Drug and Chemical Toxicology, 2018, Page 1
Zeynep Tuzcu, Cemal Orhan, Nurhan Sahin, Vijaya Juturu, and Kazim Sahin
Oxidative Medicine and Cellular Longevity, 2017, Volume 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in