Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 26, Issue 3


Role for monoaminergic systems in the antidepressant and anxiolytic properties of the hydroethanolic leaf extract from Adenia cissampeloides

Ismail O. Ishola
  • Faculty of Basic Medical Sciences, College of Medicine, Department of Pharmacology, Therapeutics and Toxicology, University of Lagos, PMB 12003 Surulere, Lagos, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sunday O. Olayemi
  • Corresponding author
  • Faculty of Basic Medical Sciences, College of Medicine, Department of Pharmacology, Therapeutics and Toxicology, University of Lagos, PMB 12003 Surulere, Lagos, Nigeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Omoniyi K. Yemitan
  • Faculty of Basic Medical Sciences, Department of Pharmacology, Lagos State University College of Medicine, Lagos, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kolawole Akinseye
  • Faculty of Basic Medical Sciences, College of Medicine, Department of Pharmacology, Therapeutics and Toxicology, University of Lagos, PMB 12003 Surulere, Lagos, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-07 | DOI: https://doi.org/10.1515/jbcpp-2014-0015


Background: Adenia cissampeloides (Planch ex. Hook) Harms (Passifloraceae) leaf infusion is used in traditional African medicine as a stimulant to treat depression and insanity. Thus, this study investigates antidepressant and anxiolytic activities of the hydroethanol leaf extract of Adenia cissampeloides (ACE) in mice.

Methods: ACE (50–200 mg/kg, p.o.) was administered to mice 1 h before behavioral studies; the forced swimming test (FST), tail suspension test (TST), elevated-plus maze test (EPM) hole-board test (HBT) and open field test (OFT). In addition, the probable mechanisms of antidepressant- and anxiolytic-like actions of ACE were also investigated.

Results: ACE (100 and 200 mg/kg) produced significant (p<0.01) reduction in immobility, along with a significant increase in swimming activity (75.20%) and climbing (190.00%), respectively, similar to anti-immobility effect of imipramine in the FST. Also, in TST, ACE (100 and 200 mg/kg) treatment significantly (p<0.01) reduced the immobility time by 35.60%, and 35.27%, respectively, which was similar to anti-immobility effect of fluoxetine (32.50%). However, the antidepressant-like effect produced by ACE was prevented (p<0.01) by yohimbine (α2-adrenoceptor antagonist), or sulpiride (dopamine D2 receptor antagonist) pretreatment. ACE (50 and 100 mg/kg) treatment (p<0.01) increased number (41.67%) and duration of head-dips (52.27%) in HBT. Similarly, ACE (50–200 mg/kg) increased duration of open arm entries (p<0.001) in EPM. However, this effect was reversed (p<0.001) by pretreatment of mice with cyproheptadine (5-HT2 receptor antagonist) (60.87%).

Conclusions: Findings from these studies revealed antidepressant-like effect of ACE mediated through interaction with dopamine D2- receptor or α2-adrenoceptor. Also an anxiolytic-like effect through interaction with 5-HT2 receptors.

Keywords: Adenia cissampeloide; α2 -adrenoceptor; dopamine D2 receptor; elevated plus maze test, 5-HT2 receptor; forced swimming test


  • 1.

    Kessler RC, Gruber M, Hettema JM, Hwang I, Sampson N, Yonkers KA. Co-morbid major depression and generalized anxiety disorders in the National Comorbidity Survey follow-up. Psychol Med 2008;38:365–74.PubMedWeb of ScienceGoogle Scholar

  • 2.

    Conway KP, Compton W, Stinson FS, Grant BF. Lifetime comorbidity of DSM-IV mood and anxiety disorders and specific drug use disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 2006;67:247–57.Google Scholar

  • 3.

    Foyet HS, Tsala DE, Bouba AA, Hritcu L. Anxiolytic and Antidepressant-like effects of the aqueous extract of Alafia multiflora Stem Barks in Rodents. Adv Pharmacol Sci 2012;2012:912041.Google Scholar

  • 4.

    Bandelow B, Zohar J, Hollander E, Kasper S, Möller HJ; WFSBP Task Force on Treatment Guidelines for Anxiety, Obsessive-Compulsive and Post-Traumatic Stress Disoders, et al. WFSBP Task Force on Treatment Guidelines for Anxiety, Obsessive- Compulsive and Post-Traumatic Stress Disorders World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive-compulsive and post-traumatic stress disorders – first revision. World J Biol Psychiatry 2008;9:248–312.PubMedWeb of ScienceGoogle Scholar

  • 5.

    Inoue T, Kitaichi Y, Koyama T. SSRIs and conditioned fear. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1810–9.PubMedCrossrefGoogle Scholar

  • 6.

    Mora S, Dıaz-Veliz G, Millan R, Lungenstrass HS. Quiros S, Coto-Morales T, et al. Anxiolytic and antidepressant-like effects of the hydroalcoholic extract from Aloysia polystachya in rats. Pharmacol Biochem Behav 2005;82:373–8.Google Scholar

  • 7.

    Zhang Z. Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci 2004;75:1659–99.Google Scholar

  • 8.

    Burkill HM. The useful plants of west tropical Africa, 2nd ed., Volume 4. Families M-R. Richmond, United Kingdom: Royal Botanic Gardens, Kew.Google Scholar

  • 9.

    Schmelzer GH, Gurib-Fakim A. Plant resources of tropical Africa 11(1) – Medicinal Plants, Netherlands: PROTA, Wageningen, 2008;791.Google Scholar

  • 10.

    Nyarko AA, Addy ME. Effect of aqueous extract of Adenia cissampeloides on blood pressure and serum analytes of hypertensive patients. Phytother Res 1990;4:25–8.CrossrefGoogle Scholar

  • 11.

    Annan K, Sarpong K, Asare C, Dickson R, Amponsah K, Gyan B, et al. In vitro anti-plasmodial activity of three herbal remedies for malaria in Ghana: Adenia cissampeloides (Planch.) Harms., Termina liaivorensis A. Chev, and Elaeis guineensis Jacq. Pharmacogn Res 2012;4:225–9.CrossrefGoogle Scholar

  • 12.

    NIH. Guide for the Use of Laboratory Animals DHHS, PHS. NIH Publication No. 85–23 (1985 Revised).Google Scholar

  • 13.

    Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 2005;4: 685–8.CrossrefWeb of ScienceGoogle Scholar

  • 14.

    The Organisation of Economic Co-operation and Development (OECD). The OECD Guideline for Testing of Chemical: 420 Acute Oral Toxicity, OECD, Paris, 2001;1–14.Google Scholar

  • 15.

    Ishola IO, Chatterjee M, Tota S, Narender T, Adeyemi OO, Palit G, et al. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol Biochem Behav 2012;103:322–31.Web of ScienceGoogle Scholar

  • 16.

    Porsolt RD, Bertin A, Jalfre M. Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977;229:327–36.Google Scholar

  • 17.

    Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacol 1985;85:367–70.Google Scholar

  • 18.

    Ishola IO, Akinyede AA, Sholarin AM. Antidepressant and anxiolytic properties of the methanolic extract of momordica charantia linn (cucurbitaceae) and its mechanism of action. Drug Res (Stuttg) 2013;PMID:2422747.Google Scholar

  • 19.

    Ulak G, Muttu O, Tanyen P, Komosuoghi FI, Akar FY, Erden BF. Involvement of serotonin receptor subtypes in the antidepressant-like effect of trim in the rat forced swimming test. Pharmacol Biochem Behav 2010;95:308–14.Web of ScienceGoogle Scholar

  • 20.

    Moreira EG, Nascimento N, Rogero JR, Vassilieff VS. Gabaergic benzodiazepine system is involved in the crotoxin-induced anxiogenic effect. Pharmacol Biochem Behav 2000;65:7–13.Google Scholar

  • 21.

    Braida D, Capurro V, Zani A, Rubino T, Viganò D, Parolaro D. et al. Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Bri J Pharmacol 2009;157:844–53.Web of ScienceGoogle Scholar

  • 22.

    Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacol 1987;92:180–5.Google Scholar

  • 23.

    Ishola IO, Olayemi SO, Idowu AR. Anticonvulsant, anxiolytic and hypnotic effects of aqueous bulb extract of Crinum glaucum A. chev (Amaryllidaceae): role of GABAergic and nitrergic systems. Pak J Biol Sci 2013;16:701–10.Google Scholar

  • 24.

    Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs. Trend Pharmacol Sci 2002;23:238–45.CrossrefGoogle Scholar

  • 25.

    Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 2005;29:547–69.PubMedCrossrefGoogle Scholar

  • 26.

    Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005;29:571–625.PubMedCrossrefGoogle Scholar

  • 27.

    Elhwuegi AS. Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:435–51.PubMedGoogle Scholar

  • 28.

    Cryan JF, Lucki I. Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine (2C) receptors. J Pharmacol Exp Ther 2000;295:1120–6.Google Scholar

  • 29.

    Nutt DJ. The role of dopamine and norepinephrine in depression and antidepressant treatment. J Clin Psychiatry 2006;67:3–8.Google Scholar

  • 30.

    Masuda Y, Ohnuma S, Sugiyama T. Alpha 2-adrenoceptor activity induces the antidepressant-like glycolipid in mouse forced swimming. Methods Find Exp Clin Pharmacol 2001;23:19–21.PubMedCrossrefGoogle Scholar

  • 31.

    Cervo L, Samanin R. Clonidine causes antidepressant-like effects in rats by activating alpha 2-adrenoceptors outside the locus coeruleus. Eur J Pharmacol 1991;193:309–13.Google Scholar

  • 32.

    Papakostas GI. Dopaminergic-based pharmacotherapies for depression. Eur Neuropsychopharmacol 2006;16:391–402.CrossrefGoogle Scholar

  • 33.

    Yamada J, Sugimoto Y, Yamada S. Involvement of dopamine receptors in the antiimmobility effects of dopamine re-uptake inhibitors in the forced swimming test. Eur J Pharmacol 2004;504:207–11.Google Scholar

  • 34.

    Dagytė G, Den Boer JA, Trentani A. The cholinergic system and depression. Behav Brain Res 2011;221:574–82.Web of ScienceGoogle Scholar

  • 35.

    Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 2006;63:1121–9.Google Scholar

  • 36.

    Masse F, Petit-Demouliere B, Dubois I, Hascöet M, Bourin M. Anxiolytic-like effects of DOI microinjections into the hippocampus (but not the amygdala nor the PAG) in the mice four plates test. Behav Brain Res 2008;188:291–7.Web of ScienceGoogle Scholar

  • 37.

    Soares VP, Zangrossi Jr, H. Stimulation of 5-HT1A or 5-HT2A receptors in the ventrolateral periaqueductal gray causes anxiolytic-, but not panicolytic-like effect in rats. Behav Brain Res 2009;197:178–85.Web of ScienceGoogle Scholar

  • 38.

    Brüning CA, Prigol M, Roehrs JA, Nogueira CW, Zeni G. Involvement of the serotonergic system in the anxiolytic-like effect caused by m-trifluoromethyl-diphenyl diselenide in mice. Behav Brain Res 2009;205:511–7.Web of ScienceGoogle Scholar

  • 39.

    Goloubkova TD, Heckler E, Rates SM, Henriques JA, Henriques AT. Inhibition of cytochrome P450-dependent monooxygenases by an alkaloid fraction from Helietta apiculata markedly potentiate the hypnotic action of pentobarbital. J Ethnopharmacol 1998;60:141–48.Google Scholar

  • 40.

    Williamson EM, Okpako DT, Evans FJ. Pharmacological methods in phytotherapy research: Selection, preparation and pharmacological evaluation of plant materials, John Wiley: Chichester 1996;184–6.Google Scholar

  • 41.

    Dias GP, Cavegn N, Nix A, do Nascimento-Bevilaqua MC, Stangl D, Zainuddin MS, et al. The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioral effects on depression and anxiety. Oxid Med Cellular Longev 2012;541971:1–18.Web of ScienceGoogle Scholar

  • 42.

    An L, Zhang Y, Yu N, Liu X, Zhao N, Yuan L, et al. Role for serotonin in the antidepressant-like effect of a flavonoid extract of Xiaobuxin-Tang. Pharmacol Biochem Behav 2008; 89: 572–80.Web of ScienceGoogle Scholar

  • 43.

    Vignes M, Maurice T, Lanté F, Nedjar M, Thethi K, Guiramand J, et al. Recasens M. Anxiolytic properties of green tea polyphenol (-)-epigallocatechin gallate (EGCG). Brain Res 2006;1110:102–15.Google Scholar

  • 44.

    Zhu WL, Shi S, Wei YM, Wang SJ, Sun CY, Ding ZB, et al. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012;65:74–80.Web of ScienceGoogle Scholar

About the article

Corresponding author: Sunday O. Olayemi, Faculty of Basic Medical Sciences, College of Medicine, Department of Pharmacology, Therapeutics and Toxicology, University of Lagos, PMB 12003 Surulere, Lagos, Nigeria, Mobile: +2348023150200, E-mail:

Received: 2014-02-17

Accepted: 2014-06-22

Published Online: 2014-08-07

Published in Print: 2015-05-01

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 26, Issue 3, Pages 301–312, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2014-0015.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in