Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph


CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

Online
ISSN
2191-0286
See all formats and pricing
More options …
Volume 26, Issue 5

Issues

Antioxidant and cytotoxic activity of stems of Smilax zeylanica in vitro

Mohammad Nasir UddinORCID iD: http://orcid.org/0000-0002-5668-5374 / Taksim Ahmed
  • Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
  • School of Pharmacy, University of Waterloo, Waterloo, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sanzida Pathan / Md. Mamun Al-Amin / Md. Sohel Rana
  • Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-22 | DOI: https://doi.org/10.1515/jbcpp-2014-0114

Abstract

Background: Plant-derived phytochemicals consisting of phenols and flavonoids possess antioxidant properties, eventually rendering a lucrative tool to scavenge reactive oxygen species. This study was carried out to evaluate in vitro antioxidant and cytotoxic potential of methanolic extract and petroleum ether extracts of Smilax zeylanica L. stems.

Methods: Phytochemical screening was done following standard procedures. Antioxidant activity was tested using several in vitro assays, viz., 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, NO assay, H2O2 assay, CUPRAC assay, FRAP assay and total antioxidant capacity assay. Total phenol and flavonoid contents were determined by colorimetric method. Brine shrimp lethality and MTT cell viability assays were used for cytotoxic potential.

Results: Preliminary phytochemical study revealed the presence of flavonoids and glycosides in both extracts. Methanolic extract was found to possess stronger antioxidant potential than petroleum ether extracts in all assays. The IC50 value of methanolic extract was 29.14±0.39 μg/mL, 120.30±3.32 μg/mL and 78.41±5.53 μg/mL in DPPH assay, NO assay and H2O2 assay, respectively. Likewise, total phenol [56.78 mg/g gallic acid (GAE)] and flovonoid [125.69 mg/g quercetin equivalents (QE)] were higher in methanolic extract. In cytotoxicity assays, petroleum ether extract showed stronger activity in both brine shrimp lethality (LC50 2.85±0.13 μg/mL) and MTT cell viability assay (IC50 15.49±1.18 μg/mL).

Conclusions: These findings demonstrate that methanolic extracts could be considered as potential sources of natural antioxidant, whereas petroleum ether extracts could be explored for promising anticancer molecules.

Keywords: antioxidant activity; brine shrimp; DPPH; H2O2; MCF7; MTT; Smilax zeylanica

References

  • 1.

    Sies H. Oxidative stress: oxidants and antioxidants. Exper Physiol 1997;82:291–5.CrossrefGoogle Scholar

  • 2.

    Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984;219:1–14.CrossrefPubMedGoogle Scholar

  • 3.

    Dillard CJ, German JB. Phytochemicals: nutraceuticals and human health. J Sci Food Agric 2000;80:1744–56.CrossrefGoogle Scholar

  • 4.

    Ramarathnam N, Osawa T, Ochi H, Kawakishi S. The contribution of plant food antioxidants to human health. Trends Food Sci Tech 1995;6:75–82.CrossrefGoogle Scholar

  • 5.

    Miliauskas G, Venskutonis PR, van Beek TA. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 2004;85:231–7.CrossrefGoogle Scholar

  • 6.

    Madhavan V, Hemalatha TH, Murali A, Yoganarasimhan SN. Antiepileptic activity of alcohol and aqueous extracts of roots and rhizomes and Smilax zeylanica Linn. Pharmacol Online 2008;3:263–72.Google Scholar

  • 7.

    Evans WC. Trease and Evans pharmacognosy, 15th ed. Edinburgh, New York: WB Saunders, 2002:300, 480.Google Scholar

  • 8.

    Kar DK, Sen S. Smilax zeylanica Linn. – a new source of diosgenin. Curr Sci 1984;53:661.Google Scholar

  • 9.

    Rajesh V, Perumal P, Sundarrajan T. Antidiabetic activity of methanolic extract of Smilax zeylanica Linn. in streptozotocin induced diabetic rats. Internet J Endocrinol 2010;6.Google Scholar

  • 10.

    Rajesh V, Perumal P, Chinthakindhi V, Prabhakaran S, Hymavathi G, Guntupalli T. In vitro evaluation of Smilax zeylanica Linn. leaves for anthelmintic activity. Internet J Pharmacol 2010;9.Google Scholar

  • 11.

    Murali A, Ashok P, Madhavan V. In vitro antioxidant activity and HPTLC studies on the roots and rhizomes of Smilax zeylanica L.(Smilacaceae). Int J Pharm Pharm Sci 2011;3:192–5.Google Scholar

  • 12.

    Thirugnanasampandan R, Mutharaian V, Bai VN. In vitro propagation and free radical studies of Smilax zeylanica Vent. Afr J Biotechnol 2009;8:395–400.Google Scholar

  • 13.

    Murali A, Ashok P, Madhavan V. Screening of methanol extract of roots and rhizomes of Smilax zeylanica L for hepatoprotective effect against carbontetrachloride induced hepatic damage. J Exp Integr Med 2012;2:237–44.Google Scholar

  • 14.

    Bari M, Islam W, Khan A. Pesticidal activity of Smilax zeylanica L. extracts on Cryptolestes pusillus (Schon.)(Coleoptera: Cucujidae). J Bangladesh Acad Sci 2010;34:205–8.Google Scholar

  • 15.

    Ahmed T, Uddin MN, Ahmed SF, Saha A, Farhana K, Rana MS. In vitro evaluation of antioxidant potential of Artocarpus chama Buch fruits. J App Pharm Sci 2012;2:75–80.Google Scholar

  • 16.

    Hasan R, Hossain M, Akter R, Jamila M, Mazumder EH, Islam I, et al. Antioxidant, antidiarrhoeal and cytotoxic properties of Punica granatum Linn. Latin Am J Pharm 2009;28:783–8.Google Scholar

  • 17.

    Ghani A. Medicinal plants of Bangladesh, 2nd ed. Dhaka, Bangladesh: The Asiatic Society of Bangladesh, 2003.Google Scholar

  • 18.

    Sadhu SK, Okuyama E, Fujimoto H, Ishibashi M. Separation of Leucas aspera, a medicinal plant of Bangladesh, guided by prostaglandin inhibitory and antioxidant activities. Chem Pharm Bull 2003;51:595–8.PubMedCrossrefGoogle Scholar

  • 19.

    Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I. Antioxidant principles from Bauhinia tarapotensis. J Nat Prod 2001;64:892–5.CrossrefPubMedGoogle Scholar

  • 20.

    Govindarajan R, Rastogi S, Vijayakumar M, Shirwaikar A, Rawat AK, Mehrotra S, et al. Studies on the antioxidant activities of Desmodium gangeticum. Biol Pharm Bull 2003;26:1424–7.CrossrefPubMedGoogle Scholar

  • 21.

    Ruch RJ, Cheng S-J, Klaunig JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989;10:1003–8.PubMedCrossrefGoogle Scholar

  • 22.

    Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 2004;52:7970–81.CrossrefGoogle Scholar

  • 23.

    Oyaizu M. Studies on products of browning reactions. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 1986;44:307–15.CrossrefGoogle Scholar

  • 24.

    Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 1999;269:337–41.PubMedCrossrefGoogle Scholar

  • 25.

    Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J Agric Food Chem 2002;50:1619–24.CrossrefGoogle Scholar

  • 26.

    Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoids content in propolis by two complementary colormetric methods. J Food Drug Anal 2002;10:178–82.Google Scholar

  • 27.

    Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 1982;45:31–4.CrossrefGoogle Scholar

  • 28.

    McLaughlin JL. Bench-top bioassays for the discovery of bioactive compounds in higher plants. Brenesia 1991;34:1–14.Google Scholar

  • 29.

    Gil MI, Ferreres F, Tomás-Barberán FA. Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin c) of fresh-cut spinach. J Agric Food Chem 1999;47:2213–7.CrossrefGoogle Scholar

  • 30.

    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, et al. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 1999;47:3954–62.CrossrefGoogle Scholar

  • 31.

    Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 1992;40:945–8.CrossrefGoogle Scholar

  • 32.

    Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka G-I, Nishioka I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem Pharmacol 1998;56:213–22.CrossrefPubMedGoogle Scholar

  • 33.

    Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–42.PubMedGoogle Scholar

  • 34.

    Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 1991;91:S14–22.CrossrefPubMedGoogle Scholar

  • 35.

    Tsutomu N, Munetaka Y, Toshihiko O, Shunro K. Suppression of active oxygen-induced cytotoricity by flavonoids. Biochem Pharmacol 1993;45:265–7.CrossrefGoogle Scholar

  • 36.

    Xu J, Li X, Zhang P, Li Z-L, Wang Y. Antiinflammatory constituents from the roots of Smilax bockii warb. Arch Pharm Res 2005;28:395–9.PubMedCrossrefGoogle Scholar

  • 37.

    Gülçin Đ, Elmastaş M, Aboul-Enein HY. Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytother Res 2007;21:354–61.CrossrefPubMedGoogle Scholar

  • 38.

    Gülçin I. Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. J Enzyme Inhib Med Chem 2008;23:871–6.CrossrefGoogle Scholar

  • 39.

    Osawa T. Novel natural antioxidants for utilization in food and biological systems. In: Uritani I, Garcia V, Mendoza E, editors. Postharvest biochemistry of plant food-materials in the tropics. Tokyo, Japan: Japan Scientific Societies Press, 1994:241–51.Google Scholar

  • 40.

    Li J, Bi X, Zheng G, Hitoshi Y, Ikeda T, Nohara T. Steroidal glycosides and aromatic compounds from Smilax riparia. Chem Pharm Bull 2006;54:1451–4.CrossrefPubMedGoogle Scholar

  • 41.

    Cakir A, Mavi A, Yıldırım A, Duru ME, Harmandar M, Kazaz C. Isolation and characterization of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation. J Ethnopharmacol 2003; 87:73–83.CrossrefPubMedGoogle Scholar

  • 42.

    Ko FN, Cheng ZJ, Lin CN, Teng CM. Scavenger and antioxidant properties of prenylflavones isolated from Artocarpus heterophyllus. Free Rad Biol Med 1998;25:160–8.Google Scholar

  • 43.

    Moridani MY, Pourahmad J, Bui H, Siraki A, O’Brien PJ. Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Rad Biol Med 2003;34:243–53.Google Scholar

  • 44.

    Kuo Y-H, Hsu Y-W, Liaw C-C, Lee JK, Huang H-C, Kuo L-MY. Cytotoxic phenylpropanoid glycosides from the stems of Smilax china. J Nat Prod 2005;68:1475–8.CrossrefGoogle Scholar

  • 45.

    Ivanova A, Mikhova B, Batsalova T, Dzhambazov B, Kostova I. New furostanol saponins from Smilax aspera L. and their in vitro cytotoxicity. Fitoterapia 2011;82:282–7.PubMedCrossrefGoogle Scholar

  • 46.

    Sa F, Gao J-L, Fung K-P, Zheng Y, Lee SM-Y, Wang Y-T. Anti-proliferative and proapoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines. Chem-Biol Interact 2008;171:1–14.CrossrefGoogle Scholar

  • 47.

    Xu S, Shang MY, Liu GX, Xu F, Wang X, Shou CC, et al. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules 2013;18:5265–87.PubMedCrossrefGoogle Scholar

  • 48.

    Ao C, Higa T, Khanh TD, Upadhyay A, Tawata S. Antioxidant phenolic compounds from Smilax sebeana Miq. LWT Food Sci Technol 2011; 44:1681–6.CrossrefGoogle Scholar

  • 49.

    Wu LS, Wang XJ, Wang H, Yang HW, Jia AQ, Ding Q. Cytotoxic polyphenols against breast tumor cell in Smilax china L. J Ethnopharmacol 2010;130:460–4.CrossrefGoogle Scholar

  • 50.

    Abdalaa S, Martin-Herrera D, Benjumea D, Gutierrez SD. Diuretic activity of some Smilax canariensis fractions. J Ethnopharmacol 2012;140:227–8.CrossrefGoogle Scholar

  • 51.

    Huang AC, Wilde A, Ebmeyer J, Skouroumounis GK, Taylor DK. Examination of the phenolic profile and antioxidant activity of the leaves of the Australian native plant Smilax glyciphylla. J Nat Prod 2013;76:1930–6.PubMedCrossrefGoogle Scholar

  • 52.

    Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP, et al. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J Ethnopharmacol 2007;113:115–24.CrossrefPubMedGoogle Scholar

  • 53.

    Shao B, Guo HZ, Cui YJ, Liu AH, Yu HL, Guo H, et al. Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography. J Pharm Biomed Anal 2007;44:737–42.CrossrefGoogle Scholar

  • 54.

    Xu J, Feng S, Wang Q, Zhang M, Zhang C. A new flavonoid glycoside from the rhizomes and roots of Smilax scobinicaulis. Nat Prod Res 2014;28:517–21.PubMedCrossrefGoogle Scholar

  • 55.

    Ozsoy N, Can A, Yanardag R, Akev N. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem 2008;110:571–83.CrossrefGoogle Scholar

  • 56.

    Seo HK, Lee JH, Kim HS, Lee CK, Lee SC. Antioxidant and antimicrobial activities of Smilax china L. leaf extracts. Food Sci Biotechnol 2012;21:1723–7.CrossrefGoogle Scholar

About the article

Corresponding author: Mohammad Nasir Uddin, Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh, Phone: +8801715824327, E-mail: ; . http://orcid.org/0000-0002-5668-5374; and Laboratory of Natural Products Research, Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh


Received: 2014-10-18

Accepted: 2015-03-20

Published Online: 2015-04-22

Published in Print: 2015-09-01


Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 26, Issue 5, Pages 453–463, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2014-0114.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anchala I. Kuruppu, Priyani Paranagama, and Charitha L. Goonasekara
Saudi Pharmaceutical Journal, 2019, Volume 27, Number 4, Page 565

Comments (0)

Please log in or register to comment.
Log in