Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph


CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

Online
ISSN
2191-0286
See all formats and pricing
More options …
Volume 26, Issue 5

Issues

Space weather and human deaths distribution: 25 years’ observation (Lithuania, 1989–2013)

Eliyahu G. Stoupel
  • Corresponding author
  • Division of Cardiology, Sackler Faculty of Medicine, Rabin Medical Center, Tel Aviv University, Denmark 2, Petah Tiqwa, 49100, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jadvyga Petrauskiene / Ramune Kalediene / Skirmante Sauliune / Evgeny Abramson / Tzippy Shochat
Published Online: 2015-06-12 | DOI: https://doi.org/10.1515/jbcpp-2014-0125

Abstract

Background: Human health is affected by space weather component [solar (SA), geomagnetic (GMA), cosmic ray (CRA) – neutrons, space proton flux] activity levels. The aim of this study was to check possible links between timing of human (both genders) monthly deaths distribution and space weather activity.

Methods: Human deaths distribution in the Republic of Lithuania from 1989 to 2013 (25 years, i.e., 300 consecutive months) was studied, which included 1,050,503 deaths (549,764 male, 500,739 female). Pearson correlation coefficients (r) and their probabilities (p) were obtained for years: months 1–12, sunspot number, smoothed sunspot number, solar flux (2800 MGH, 10.7 cm), adjusted solar flux for SA; A, C indices of GMA; neutron activity at the earth’s surface (imp/min) for CRA. The cosmophysical data were obtained from space science institutions in the USA, Russia and Finland. The mentioned physical parameters were compared with the total number of deaths, deaths from ischemic heart disease (n=376,074), stroke (n=132,020), non-cardiovascular causes (n=542,409), accidents (n=98,805), traffic accidents (n=21,261), oncology (n=193,017), diabetes mellitus (n=6631) and suicide (n=33,072).

Results: Space factors were interrelated as follows for the considered period: CRA was inversely related to SA and GMA, CRA/SA (r=−0.86, p>0.0001), CRA/GMA (r=−0.70, p<0.0001); SA and GMA were correlated (r=0.50, p<0.0001). The total deaths distribution was inversely related to SA (r=−0.31, p<0.0001) and correlated with CRA (neutron) activity (r=0.234, p<0.0001). Ischemic heart disease (IHD) deaths (most at home) show a drop yearly (r=−0.2551), more for men. It was correlated with GMA for the total IHD population and men. Stroke deaths were inversely related to SA (r=−0.38, p<0.0001) and correlated with CRA (r=0.41, p<0.0001) and year (r=0.49, p<0.0001), showing a steady rise. The IHD/stroke deaths ratio was negatively correlated with the years of observation (r=−0.754, p=0.0001). Non-cardiovascular deaths were inversely related to SA (r=−039, p<0.0001) and correlated with CRA (r=0.263, p<0.0001). Oncology deaths that now are dominating in many places were inversely related to SA (r=−0.475, p<0.0001) and correlated with CRA (r=0.426, p<0.0001). Suicide showed a drop with years (r=−0.29, p<0.0001), possibly related to excessive immigration of young population (18–34 years) in the last decade and correlated with two of three GMA indices. Traffic accidents were correlated with SA and GMA (r=0.392–0.461, p<0.0001) and inversely related to CRA (r=−0.436).

Conclusions: Most groups of deaths are related to space weather component activity. Extreme levels of activities of both groups (SA, GMA, and opposite CRA – neutron) are related to some health risks. In the considered period, there were relatively few GMA storms and low GMA was dominating, accompanied by higher CRA (neutron) activity. The ways of action of the components of space weather on the human body need additional studies. There is a special need for the prevention of rising cerebral vascular accidents and oncology malignancies as the causes of death.

Keywords: activity; cosmic ray; death; geomagnetic; month; neutron; solar; space weather; year

References

  • 1.

    Tchijevsky A. Effects des facteurs physiques de la nature sur les Elements nerveuux et sur l’activite nerveuse des animaux. Home rapport presente su laboratoire practique de Zoo psychologie, 1925, Moscow. Traite de climatoloie biologique et Medicale V.1:672, Paris.Google Scholar

  • 2.

    Chizhevsky A. Terrestrial echo of the solar storms, 2nd ed. Moscow: Misl, 1976.Google Scholar

  • 3.

    Sardon G, Faure M. Les taches solaires et la pathologie humaine. Paris: La Presse Medicale, no. 18, 1927.Google Scholar

  • 4.

    Budai E. Taches solaires et meningite cerebrospinale. Revue de Pathologie compare et d’Hygiene Generale, 419. Paris, 1931.Google Scholar

  • 5.

    Faure M. Cosmobiologie. Nice, 1934–1935.Google Scholar

  • 6.

    Barnothhy J. Biological effects of magnetic fields. Vol. 1, New York: Plenum Press, 1964:93pp.Google Scholar

  • 7.

    Rozhdestvenskaya E, Novikova K. The influence of solar activity on the blood fibrinolytic system. Med Referative J 1969;10:65–9.Google Scholar

  • 8.

    Ganelina I. Sudden deaths in acute myocardial infarction and problems of reanimation. Klin Med (Moscow) 1969;11:111–9.Google Scholar

  • 9.

    Oranevski V, Breus T, Baevski R, Rapoport S, Petrov V, Barsukova Zh. Effect of geomagnetic activity on the functional status of the body. Biofizika 1998;43:819–26.Google Scholar

  • 10.

    Stoupel E. Forecasting in cardiology. New York, Toronto/Jerusalem: John Wiley & Sons/Israel University Press, 1976:141pp.Google Scholar

  • 11.

    Stoupel E. Solar-terrestrial prediction: aspects for preventive medicine. In: Donnelly RF, editor. Solar-terrestrial predictions proceedings. Vol. 4, Boulder, CO: US NOAA, Space Environment Laboratory, 1980:G29–G40.Google Scholar

  • 12.

    Stoupel E. Space weather and timing of cardiovascular events (clinical cosmobiology). Saarbrucken: Lambert Academic Publishing, 2012:72pp.Google Scholar

  • 13.

    NOAA-SESC (now SWPC). Preliminary report and forecast of solar geophysical data (weekly). NOAA-SESC (now SWPC Weekly Highlights & Forecasts of Solar Geophysical Data), USAF. Available at: http://www.swpc.noaa.gov/products/weeklyhighlights-and-27-day-forecast.

  • 14.

    Solar Indices Bulletin (monthly). NOAA, National Geophysical Data Center, USA.Google Scholar

  • 15.

    Geomagnetic Indices Bulletin (monthly). NOAA, National Geophysical Center, USA.Google Scholar

  • 16.

    Cosmic Data (monthly review). IZMIRAN, Russian Academy of Sciences.Google Scholar

  • 17.

    Neutron Monitoring Data (daily, monthly, yearly). Moscow Neutron Monitoring Station, Russian Academy of Sciences.Google Scholar

  • 18.

    Neutron Monitoring Data (daily, monthly, yearly). Finland: Oulu University.Google Scholar

  • 19.

    National Space Science Data Center Bulletin (Internet data, monthly). Greenbelt, MD: Goddard National Space Flight Center.Google Scholar

  • 20.

    Heckman G, editor. Glossary of solar-terrestrial terms. Boulder, CO: NOAA, Space Environment Services Center, USAF, 1988 (revised 1992).Google Scholar

  • 21.

    Stoupel E, Petrauskiene J, Gabbay U, Kalediene R, Abramson E, Sulkes J. Circannual rhythmicity of death distribution. Acta Medica Lithuanica 2001;8:37–42.Google Scholar

  • 22.

    Stoupel E, Joshua H, Lahav J. Human blood coagulation parameters and geomagnetic activity. Eur J Int Med 1996;7:217–20.Google Scholar

  • 23.

    Stoupel E, Abramson E, Gabbay U, Pick AI. Relationship between immunoglobulin levels and extremes of solar activity. Int J Biometeorol 1995;38:89–91.PubMedCrossrefGoogle Scholar

  • 24.

    Stoupel E, Monselize Y, Lahav J. Changes in autoimmune markers of the anti-cardiolipin syndrome on days of extreme geomagnetic activity. J Basic Clin Physiol Pharmacol 2006;17:269–78.Google Scholar

  • 25.

    Stoupel E, Abramson E, Israelevich P, Sulkes J, Harell D. Dynamics of serum C-reactive protein (CRP) and cosmophysical activity. Eur J Int Med 2007;18:124–8.CrossrefGoogle Scholar

  • 26.

    Stoupel E, Abramson E, Domarkiene S, Shimshoni M, Sulkes J. Space proton flux and the temporal distribution of cardiovascular deaths. Int J Biometeorol 1997;40:113–6.PubMedCrossrefGoogle Scholar

  • 27.

    Stoupel E, Israelevich P, Gabbay U, Abramson E, Petrauskiene J, Kalediene R, et al. Correlation of two levels of space proton flux with monthly distribution of deaths from cardiovascular disease and suicide. J Basic Clin Physiol Pharmacol 2000;1:63–71.Google Scholar

  • 28.

    Sigl G. Ultra-high-energy cosmic rays. Phys Astrophys Sci 2001;291:73–9.Google Scholar

  • 29.

    Aharonian F, Akhperanian AG, Bazer-Bachi AR, Belicke M, Benbow W, Berniohr K, et al. Discover of very-high-energy gamma rays from the Galactic Centre ridge. Nature 2006;439:695–8.CrossrefGoogle Scholar

  • 30.

    The Pierre Auger Collaboration. Correlation of the highest–energy cosmic rays with nearby extragalactic objects. Science 2007;318:938–43.Google Scholar

  • 31.

    Vencloviene J, Babarskiene R, Milvidaite I, Kubilius R, Stasionyte J. The effect of solar – geomagnetic activity during hospital admission on coronary events within 1 year in patients with acute coronary syndromes. Adv Space Res 2013;52: 2192–8.Google Scholar

  • 32.

    Khabarova OI, Dimitrova S. Some proves of integrated influence of geomagnetic activity and weather changes on human health. Fundamental Space Research. Proceedings of International Conference, Sunny Beach, Bulgaria, Sept. 21–28, 2008:306–9.Google Scholar

  • 33.

    Gurfinkel YI. Ischemic heart disease and solar activity. Moscow: IIKC. “Elfi-3”, 2004.Google Scholar

  • 34.

    Stoupel E, Hod M, Shimshoni M, Friedman S, Ovadia J. Pregnancy induced hypertension in months with different cosmic activity. Clin Exper Obst Gynec 1990;17:7–12.Google Scholar

  • 35.

    Stoupel E, Keret R, Assa S, Kaufman H, Shimshoni M, Laron Z. Secretion of growth hormone, prolactin and corticosteroids during different levels of geomagnetic activity. Neuroendocrinol Lett 1983;5:365–8.Google Scholar

  • 36.

    Stoupel E. Considering space weather forces interaction on human health. The equilibrium paradigm in clinical cosmobiology: is it equal? J Basic Clin Physiol Pharmacol 2015;26:147–51.Google Scholar

  • 37.

    Stoupel E, Zabludovsky M, Wittenberg C, Boner G. Ambulatory blood pressure monitoring in patients with hypertension on days of high and low geomagnetic activity. Int J Hypertens 1998;39:293–4.Google Scholar

  • 38.

    Stoupel E, Keret R, Gil-Ad I, Assa S, Silbergeld A, Shimshoni M, et al. Secretion of growth hormone and prolactin in extreme periods of solar activity in solar cycle 21 (1976–1986). Neuroendocrinol Lett 1980;5:191–295.Google Scholar

  • 39.

    Stoupel E, Domarkiene S, Radishauskas R, Bernotiene G, Abramson E, Israelevich Sulkes J. Links between monthly rates of four types of acute myocardial infarction and their corresponding cosmophysical activity parameters. J Basic Clin Physiol Pharmacol 2004;14:175–84.Google Scholar

  • 40.

    Stoupel E, Tamoshiunas A, Radishauskas R, Bernotiene G, Abramson E, Israelevich P. Neutrons and the plaque: AMI (n-8920) at days of zero GMA/high neutron activity (n-36) and the following days and week. Kaunas, Lithuania, 2000–2007. Clin Exp Cardiol 2011;12:121–5.Google Scholar

  • 41.

    Stoupel E, Domarkiene S, Radishauskas R, Abramson E, Sulkes J. Deaths from ischemic and hemorrhagic stroke on days of different levels of geomagnetic activity (GMA). Semin Cardiol 2003;9:46–51.Google Scholar

  • 42.

    Stoupel E, Domarkiene S, Radishauskas R, Abramson E, Sulkes J. Sudden cardiac death and geomagnetic activity: links to age, gender and agony time. J Basic Clin Physiol Pharmacol 2002;13:23–33.Google Scholar

  • 43.

    Stoupel E, Petrauskiene J, Kalediene R, Domarkiene S, Abramson E, Sulkes J. Distribution of deaths from ischemic heart disease and stroke: environmental and aging influences in men and woman. J Basic Clin Physiol Pharmacol 1996;7:303–19.Google Scholar

  • 44.

    Stoupel E, Babayev E, Mustafa F, Abramson E, Israelevich P, Sulkes J. Acute myocardial infarction occurrence: environmental links – Baku 2003–2005 data. Med Sci Monit 2007;13:BR175–9.Google Scholar

  • 45.

    Stoupel E, Babayev E, Mustafa F, Abramson E, Israelevich P, Sulkes J. Clinical cosmobiology – sudden cardiac death and daily/monthly geomagnetic, cosmic ray and solar activity – the Baku study (2003–2005). Sun Geosphere 2006;1:13–6.Google Scholar

  • 46.

    Stoupel E, Abramson E, Israelevich P. Left anterior descending/right coronary arteries as culprit arteries in acute myocardial infarction (n = 2011) in changing physical environment, percutaneous coronary intervention data (2000–2010). J Basic Clin Physiol Pharm 2011;22:91–6.Google Scholar

  • 47.

    Stoupel E, Kusniec J, Mazur A, Abramson E, Israelevich P, Strasberg B. Timing of life-threatening arrhythmias detected by implantable cardioverter-defibrillators in relation to changes in cosmophysical factors. Cardiol J 2008;15:1–4.Google Scholar

  • 48.

    Stoupel E, Kusniec J, Golovchiner G, Abramson E, Kadmon U, Strasberg B. Association of electrical heart storm occurrence with environmental physical activity. Pacing Clin Electrophysiol 2014;37:1067–70.CrossrefGoogle Scholar

  • 49.

    Stoupel E, Israelevich P, Petrauskiene J, Kalediene R, Abramson E, Sulkes J. Cosmic ray activity and monthly number of deaths: a correlative study. J Basic Clin Physiol Pharmacol 2002;13:23–32.Google Scholar

  • 50.

    Dorman LI. Cosmic ray’s as a factor and tool for forecasting of space weather influence on the biosphere. In: Proceedings of International Conference Space Weather Effects on Humans in Space and on Earth. Space Reasearch Institute of the RAS. Moscow 2013. Vol. 1-2. pp. 799–812.Google Scholar

  • 51.

    Nias AH. An introduction to radiotherapy. John Wiley & Sons, 1998 (reprinted 2000).Google Scholar

  • 52.

    Hall EJ, GIaccia AJ. Radiotherapy for radiologists. Philadelphia: Lippincott and Wilkins & Williams, 2006.Google Scholar

  • 53.

    Stoupel E, Tamoshiunas A, Radishauskas R, Bagdoniene G, Abramson E, Sulkes J, et al. Acute myocardial infarction (AMI) and intermediate coronary syndrome (ICS). Health 2010;2:129–32.Google Scholar

  • 54.

    Maseri A, Fuster V. Is there a vulnerable atherosclerotic plaque? Circulation 2003;107:2068–73.CrossrefGoogle Scholar

  • 55.

    Libby P. Vascular biology of atherosclerosis. Circulation 2003;91:56–64.Google Scholar

  • 56.

    Stoupel E. Atherothrombosis: environmental links. J Basic Clin Physiol Pharmacol 2008;1:135–45.Google Scholar

  • 57.

    Anthony R, Daubert JP, Zareba W. Mechanisms of ventricular fibrillation in MADIT II patients with implantable cardioverter-defibrillators. Pacing Clin Electrophysiol 2008;31:144–50.CrossrefGoogle Scholar

  • 58.

    Stoupel E, Babayev E, Abramson E, Sulkes J. Days of “Zero” level geomagnetic activity accompanied by the high neutron activity and dynamics of some medical events – antipodes to geomagnetic storms. Health 2013;5:1–7.Google Scholar

  • 59.

    Bernotiene G, Radishauskas R, Gogelis G, Bernotaite L. Coincidence of mortality from ischemic heart disease registry and official mortality statistics in Kaunas middle-aged population. Lithuanian Family Physician 2006;10:320–4.Google Scholar

  • 60.

    Stoupel E, Kalediene R, Petrauskiene J, Starkuviene S, Abramson E, Isrelevich P, et al. Twenty years study of Solar, Geomagnetic, Cosmic Ray activity links with monthly deaths number (n-850.304). J. Biomedical Science and Engeneering 2011;4:1–9.Google Scholar

  • 61.

    Stoupel E. Space weather and medical events: medical observations for 45 years. (Clinical Cosmobiology). In Proceedings of the International Conference “Space Weather Effects on Humans in Space and on Earth”. June 4–8, 2012. Moscow. Institute of Space Research of the Russian Academy of Science. Vol. 2, Chapter 4, pp. 551–9.Google Scholar

  • 62.

    Lithuanian Official Statistics Portal. 2014.10.28. pp. 1–2. Lithuanian Yearbook of Statistics. (Yearly). Vilnius, Lithuania (http://osp.stat.gov.lt/en/web/guest/home).

  • 63.

    Beaglerole R. International trends in coronary heart disease mortality, morbidity, risk factors. Oxford J Med Epidemiol Rev 2010;12:1–15.Google Scholar

  • 64.

    Stoupel E, Martfel J, Rotenberg Z. Paroxysmal atrial fibrillation and stroke in male and female above and below age 65 on days of different geomagnetic activity. J Basic Clin Physiol Pharmacol 1994;5:315–29.Google Scholar

  • 65.

    Jorgensen MJ, Nakayama H, Reith J, Rasschow HO, Olsen TS. Acute stroke with atrial fibrillation. Stroke 1996;27:1765–9.CrossrefGoogle Scholar

  • 66.

    Ahmad Y. Stroke prevention in atrial fibrillation: concepts and controversies. Curr Cardiol Rev 2012;8:290–301.CrossrefGoogle Scholar

  • 67.

    Saposhnikov D, Revich B, Gurfinkel Y, Naumova E. The influence of meteorologic and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia. Int J Biometeorol 2014;58:799–808.CrossrefGoogle Scholar

  • 68.

    Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al. AHA scientific statement: air pollution and cardiovascular disease. Circulation 2004;109:2655–71.CrossrefGoogle Scholar

  • 69.

    Stoupel E. Gene functional dynamics: environment as a trigger. J Basic Clin Physiol Pharmacol 2014;25:129–33.Google Scholar

  • 70.

    Ebrille E, Konecny T, Spacek R, Konecnny D, Jones P, Ambroz P, et al. Correlation of geomagnetic activity with implantable cardioverter defibrillator shocks and antitachycardia pacing. Mayo Clinic Proc 2015;90:202–8.CrossrefGoogle Scholar

  • 71.

    Einstein A. Mein Weltbild. Amsterdam, The Netherlands: Europa Verlag, 1932.Google Scholar

About the article

Corresponding author: Eliyahu G. Stoupel, Division of Cardiology, Sackler Faculty of Medicine, Rabin Medical Center, Tel Aviv University, Denmark 2, Petah Tiqwa, 49100, Israel, E-mail:


Received: 2014-12-01

Accepted: 2015-03-26

Published Online: 2015-06-12

Published in Print: 2015-09-01


Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 26, Issue 5, Pages 433–441, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2014-0125.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Neil M. Fournier
International Journal of Biometeorology, 2019, Volume 63, Number 9, Page 1243
[2]
Chuanlei Liu, Weihua Zhang, Kurt Ungar, Ed Korpach, Brian White, Mike Benotto, and Eric Pellerin
Journal of Environmental Radioactivity, 2018, Volume 190-191, Page 31
[3]
V. A. Ozheredov, S. M. Chibisov, M. L. Blagonravov, N. A. Khodorovich, E. A. Demurov, V. A. Goryachev, E. V. Kharlitskaya, I. S. Eremina, and Z. A. Meladze
International Journal of Biometeorology, 2017, Volume 61, Number 5, Page 921
[4]
Eliyahu Stoupel, Radishauskas Richardas, Vaichiulis Vidmantas, Bernotiene Gailute, Tamoshiunas Abdonas, and Abramson Evgeny
Health, 2016, Volume 08, Number 05, Page 402

Comments (0)

Please log in or register to comment.
Log in