Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Haim, Abraham / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu

6 Issues per year

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 26, Issue 6


Neurobehavioural evaluation of Lophira alata (Ochnaceae) stem bark extract in mice

Loretta O. Iniaghe / Igbe Ighodaro / Mohammed G. Magaji / Tabot P. Tabot / Ijeoma T. Maduka
Published Online: 2015-03-14 | DOI: https://doi.org/10.1515/jbcpp-2014-0096


Background: Stem bark and leaves of Lophira alata (Family: Ochnaceae) have been used traditionally for their anti-psychotic, anti-convulsant and anxiolytic properties. Since no existing data was found on the neurobehavioural properties, this study was carried out to evaluate some neurobehavioural properties of the aqueous extract of the stem bark of L. alata in animal models.

Methods: The oral mean lethal dose (LD50) of the extract was estimated, and preliminary phytochemical screening was conducted. Lophira alata extract (200, 400 and 800 mg/kg, p.o.) was investigated for antidepressant effect using the forced swim and tail suspension tests, and the anxiolytic potential was assessed using the stair case and hole board tests. Pentylenetetrazole-induced convulsion test was used to investigate the anticonvulsant potential of the extract.

Results: The LD50 was estimated to be >5000 mg/kg. Oral administration of L. alata extract produced a significant (p<0.05) non-dose-dependent decrease in the period of immobility in both the forced swim and tail suspension tests. While a significant decrease (p<0.05) in episodes of grooming was recorded in the staircase test, the number of head dips was not significantly reduced (p>0.05) in the hole board test. In the pentylenetetrazole-induced convulsion, a non-dose-dependent increase in onset of tonic-clonic seizures and protection from death was recorded.

Conclusions: The results obtained suggest that the aqueous stem bark extract of L. alata possesses neurobehavioural properties which may account for its use in ethnomedicine.

Keywords: anxiolysis; convulsion; depression; ethnomedicine; L ophira alata


  • 1.

    Kurt H, Andrew M, Ndjoko K, Wolfende JL. The potential of African plants as sources of drugs. Curr Org Chem 2000;4:973–1010.CrossrefGoogle Scholar

  • 2.

    Ernst E. The efficacy of herbal medicine – an overview. Fundam Clin Pharmacol 2005;19:405–9.PubMedCrossrefGoogle Scholar

  • 3.

    Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod 1997;60:52–60.PubMedCrossrefGoogle Scholar

  • 4.

    Amos S, Kolawole E, Akah P, Wambebe C, Gamaniel K. Behavioural effects of the aqueous extract of Guiera senegalensis in mice and rats. Phytomed 2001;8:356–61.CrossrefGoogle Scholar

  • 5.

    Magaji MG, Anuka JA, Abdu-Aguye I, Yaro AH, Hussaini IM. Behavioural effects of the methanolic root bark extract of Securinega virosa in rodents. Afr J Trad CAM 2008;5:147–53.Google Scholar

  • 6.

    Zhang ZJ. Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci 2004;75:1659–69.PubMedCrossrefGoogle Scholar

  • 7.

    Tih AE, Ghogomu RT, Sondengam BL, Caux CB, Bodo B. Minor biflavonoids from Lophira alata leaves. Biochem Syst Eco 2003;31:549.CrossrefGoogle Scholar

  • 8.

    Burkill HM, editor. The useful plants of West Tropical Africa 2nd ed. London: Royal Botanical Gardens, Kew, 1985:969.Google Scholar

  • 9.

    Tih EA, Tih RG, Sondengam BL, Martin MT, Bodo B. Minor bioflavonoids from Lophira alata leaves. J Nat Prod 1994;57:971–7.CrossrefGoogle Scholar

  • 10.

    Ibrahim JA, Muazzam I, Jegede IA, Kunle OF, Okogun JI. Ethno-medicinal plants and methods used by Gwandara tribe of Sabo Wuse in Niger State Nigeria, to treat mental illness. Afr J Trad CAM 2007;4:211–8.Google Scholar

  • 11.

    Pieme CA, Dzoyem JP, Kechia FA, Etoa FX, Penlap V. In vitro antimicrobial activity of extracts from some Camerounian medicinal plants. J Biol Sci 2008;8:902–7.CrossrefGoogle Scholar

  • 12.

    Ajiboye TO, Yakubu MT, Olajide AT. Cytotoxic, antimutagenic, and antioxidant activities of methanolic extract and chalcone dimers (lophirones B and C) derived from Lophira alata stem bark (Van Tiegh. Ex Keay). J Evid Based CAM 2014;19:20–30.Google Scholar

  • 13.

    Trease GE, Evans MC, editors. Textbook of pharmacognosy, 12th ed. London: Balliere Tindall, 1983:322–83.Google Scholar

  • 14.

    National Institute for Health, Public Health Service on Humane Care and Use of Laboratory Animals. USA, 2002.Google Scholar

  • 15.

    Lorke D. A new approach to acute toxicity testing. Arch Toxicol 1983;54:275–87.PubMedCrossrefGoogle Scholar

  • 16.

    Porsolt RD, Bertin A, Jalfre M. Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn 1977;229:327–36.Google Scholar

  • 17.

    Alpermann HG, Schacht U, Usinger P, Hock FJ. Pharmacological effects of Hoe 249: a new potential antidepressant. Drug Dev Res 1993;25:267–82.Google Scholar

  • 18.

    Steru L, Chermat R, Thierry B, Simon P. Tail suspension test: a new method for screening antidepressants in mice. Psychopharmacol 1985:85;367–70.Google Scholar

  • 19.

    Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD. The tail suspension test. J. Vis. Exp. 2012;59:3769.Google Scholar

  • 20.

    Simiand J, Keane PE, Morre M. The staircase test in mice: a simple and efficient procedure for primary screening of anxiolytic agents. Psychopharmacol 1984;84:48–53.CrossrefGoogle Scholar

  • 21.

    Boissier JR, Simon P. Dissociation de deux composantes dans le comportement d’investigation de la souris. Arch. Int. Pharmacodyn 1964;147:372–88.Google Scholar

  • 22.

    Akah PA, Sampson A, Gamaniel K, Wambebe C. Effect of coconut water on the activity of some centrally acting drugs. Indian Drugs 1998;35:693–5.Google Scholar

  • 23.

    Magaji MG, Yaro AH, Adamu A, Yau J, Malami S, Abubakar Y, et al. Some neuropharmacological studies on hydroalcoholic extract of Maerua angolensis DC (Caparidaceae) in mice and chicks. Int J Pure Appl Sci 2009;3:14–21.Google Scholar

  • 24.

    Pritam SJ, Amol BB, JS Sanjay. Analgesic activity of Abelmoschus monihot extracts. Int J Pharmacol 2011;7:716–20.CrossrefGoogle Scholar

  • 25.

    Verma A, Jana GK, Sen S, Chakraborty R, Sachan SA, Mishra A. Pharmacological evaluation of Saraca indica leaves for central nervous system depressant activity in mice. J Pharm Sci Res 2010;2:338–43.Google Scholar

  • 26.

    Bhatacharya SK, Satyan KS. Experimental methods for evaluation of psychotropic agents in rodents: I-Anti-anxiety agents. Indian J Exp Biol 1997;35:565–75.Google Scholar

  • 27.

    Sloley BD, Urichuk LJ, Morley P, Durkin J, Shan JJ, Pang PK, et al. Identification of kaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo biloba leaves. J Pharm Pharmacol 2000;52:451–59.PubMedCrossrefGoogle Scholar

  • 28.

    Spencer JP. The impact of fruit flavonoids on memory and cognition. Br J Nutr 2010;104:S40–S7.Web of ScienceCrossrefPubMedGoogle Scholar

  • 29.

    Nielsen M, Frokjaer S, Braestrup C. High affinity of the naturally occurring biflavonoid amentoflavon to brain benzodiazepine receptors in vitro. Biochem Pharmacol 1988;37:3285–87.PubMedCrossrefGoogle Scholar

  • 30.

    Herberlain H, Tscheirsch KP, Schazer Hl. Flavanoids from Leptospermum scoparium with affinity to the benzodiazepine receptors characterized by structure activity relationship and in vivo studies of plant extract. Pharmazie 1994;49:912–22.Google Scholar

  • 31.

    Hamm HE. The many faces of G-protein signaling. J.Biol Chem 1998;273:669–72.Google Scholar

  • 32.

    Freissmuth M, Waldhoer M, Bofill-Cardoba ME, Nanoff CC. G protein antagonists. Trends Pharmacol Sci 1999;20:237–45.CrossrefPubMedGoogle Scholar

  • 33.

    Neves SR, Ram PT, Iyengar RG. G-protein pathways. Science 2002:296:1636–9.Google Scholar

  • 34.

    Ameri A. The effects of aconitum alkaloids on the central nervous system. Prog Neurobiol. 1998;56:211–35.CrossrefPubMedGoogle Scholar

  • 35.

    Chen L, Dai J, Wang Z, Zhang H, Huang Y, Zhao Y. Ginseng total saponins reverse corticosterone-induced changes in depression-like behaviour and hippocampal plasticity-related proteins by interfering with GSK-3β-CREB Signaling Pathway. Evid Based CAM 2014;2014:1055–64.Google Scholar

  • 36.

    Chakraborty A, Amudha P, Geetha M, Singh NS. Evaluation of anxiolytic activity of methanolic extract of Sapindus mukorossi in mice. Int J Pharma Bio Sci 2010;1:1–8.Google Scholar

  • 37.

    Barua CC, Roy JD, Buragohain B, Barua AG, Borah P, Lahkar M. Anxiolytic effects of hydroethanolic extract of Drymaria cordata L Wild. Indian J Exp Biol 2009;47:969–73.Google Scholar

  • 38.

    Wagner H, Ott S, Jureie K, Morton J, Neszmelyi A. Chemistry 13C NMR study and pharmacology of two saponins from Colubrina asiatica. Planta Med 1983;48:136–41.CrossrefGoogle Scholar

  • 39.

    Vongtau HO, Abbah J, Ngazal IE, Kunle OF, Chindo BA, Otsapa PB, et al. Antinociceptive and anti-inflammatory activities of the methanolic extract of Pinanari polyandra stem bark in rats and mice. J Ethnopharmacol 2004;90:115–21.CrossrefGoogle Scholar

  • 40.

    Matsumara F. Toxicology of insecticides 2nd ed. NY: Plenum Press, 1985:588.Google Scholar

  • 41.

    Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioural effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 2005;29:547–69.CrossrefGoogle Scholar

  • 42.

    O’Leary OF, Cryan JF (editors). The tail-suspension test: a model for characterizing antidepressant activity in Mice. Springer protocols 2009:119–37.Google Scholar

  • 43.

    Mineur YS, Belzung C, Crusio WE. Effects of unpredictable chronic mild stress on anxiety and depression-like behaviour in mice. Behav Brain Res 2006;175:43–50.PubMedCrossrefGoogle Scholar

  • 44.

    Thiébot MH, Soubrié P, Simon P, Boissier JR. Dissociation de deux composantes du comportement chez le rat sous l’effet de psychotropes. Application à l’etude des anxiolytiques. Psychopharmacologia 1973;31:77–90.CrossrefGoogle Scholar

  • 45.

    Milman A, Weizman R, Rigai T, Rice KC, Piuck CG. Behavioural effects of opioids subtypes compared to benzodiazepines in the staircase test paradigm. Behav Brain Res 2006; 170:141–7.CrossrefGoogle Scholar

  • 46.

    Files SE, Wardill AG. Validity of head dipping as a measure of exploration in a modified hole-board. Psychopharmacologia 1975;44:53–9.CrossrefGoogle Scholar

  • 47.

    Vogel HG, editor. Drug discovery and evaluation, pharmacological assays, 2nd ed. Berlin Heidelberg: Springer-Verlag, 2002;393–4.Google Scholar

  • 48.

    Wolfgang L. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011;20:359–68.Web of ScienceCrossrefGoogle Scholar

  • 49.

    Gale K. Role of GABA in the genesis of chemoconvulsant seizures. Toxicol Lett 1992;64:417–28.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Loretta O. Iniaghe, 24570 Stewart Street, 65c, Loma Linda, CA 92354, CA, USA, Phone: +14142080319, +2348022113816, E-mail: ; and Department of Pharmacology and Toxicology, University of Benin, Benin City, Nigeria

Received: 2014-08-25

Accepted: 2015-01-05

Published Online: 2015-03-14

Published in Print: 2015-11-01

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 26, Issue 6, Pages 523–529, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2014-0096.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in