Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 29, Issue 1


Antidiabetic potential of polyphenolic-rich fraction of Tamarindus indica seed coat in alloxan-induced diabetic rats

Santosh Singh Bhadoriya
  • Corresponding author
  • Phytopharmacological Research Laboratory, Department of Pharmacology, Oriental College of Pharmacy, Bhopal, Madhya Pradesh 462021, India, Phone: +91 9098941416
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aditya Ganeshpurkar / Ravi Pratap Singh Bhadoriya
  • Institute of Microbial Techniques and Culture, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sanjeev Kumar Sahu
  • Phytopharmacological Research Laboratory, Department of Pharmacology, Oriental College of Pharmacy, Bhopal, Madhya Pradesh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jay Ram Patel
  • Phytopharmacological Research Laboratory, Department of Pharmacology, Oriental College of Pharmacy, Bhopal, Madhya Pradesh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-09 | DOI: https://doi.org/10.1515/jbcpp-2016-0193



Tamarindus is a monotypic genus and belongs to the subfamily Caesalpinioideae of the family Leguminosae (Fabaceae), Tamarindus indica L., commonly known as Tamarind tree is one of the most important multipurpose tropical fruit tree species in the India, Sudan, Nigeria, Bangladesh and entire subcontinent.


Hydroethanolic seed coat extract of Tamarindus indica (HETI) was assessed for presence of phytoconstituents and selection of optimum dose through acute and sub acute toxicity study. The single and multidose (14 days) study were conducted to evaluate antidiabetic potential of HETI in alloxan induced rats via determine of blood glucose level, body weight, hematological profile, extra-pancreatic glucose utilization of isolated rat hemi-diaphragm as well as histopathology of rat pancreas.


Phytochemical analysis of HETI showed the presence of polyphenol like flavonoids. Single and multidose of HETI significantly (p<0.05; p<0.001) reduced blood glucose level in normoglycaemic, glucose loaded and alloxan induced hyperglycaemic animals. HETI exerts the protective effect on pancreatic β-cells as per results obtained from histopathology of animals. Moreover, HETI increased glucose uptake in isolated rat hemi-diaphragm and prevents decrease in body weight along with recovery of altered hematological parameters.


The study revealed that HETI have potent hypoglycaemic action by virtue of its phytoconstituents and it can be used as a herbal medicine for diabetes.

Keywords: Tamarindus indica; hydroethanolic seed coat; phytoconstituents; optimum dosage


  • 1.

    Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation Diabetic Med 1998;15:539–53.Google Scholar

  • 2.

    Bell GI. Molecular defects in diabetes mellitus. Diabetes 1991;40:413–7.CrossrefPubMedGoogle Scholar

  • 3.

    DeFronzo RA. Pharmacologic therapy for type-2 diabetes mellitus. Ann Intern Me 1999;13:281–303.Google Scholar

  • 4.

    Parving HH, Gall M, Skott P, Jorgensen H, Lokkegaard H, Jorgensen F, et al. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int 1992;41:758–62.CrossrefPubMedGoogle Scholar

  • 5.

    Gokcel A, Karakose H, Ertorer EM, Tanaci N, Tutuncu NB, Guvener N. Effects of sibutramine in obese female subjects with type 2 diabetes and poor blood glucose control. Diabetes Care 2001;24:1957–60.CrossrefPubMedGoogle Scholar

  • 6.

    Sinha A, Formica C, Tsalamandris C, Panagiotopoulos S, Hendrich E, DeLuise M, et al. Effect of insulin on body composition in patients with insulin-dependent and non-insulin-dependent diabetes. Diabetes Med 1996;13:40–6.CrossrefGoogle Scholar

  • 7.

    Bhattaram VA, Ceraefe M, Kohlest C, Veit M, Derendorf H. Pharmacokinetics and bioavailability of herbal medicinal products. Phytomed 2002;9:1–36.CrossrefGoogle Scholar

  • 8.

    Mahomed IM, Ojewole JA. Hypoglycemic effect of Hypoxis hemerocallidea corm (African potato) aqueous extract in rats. Methods Find Exp Clin Pharmacol 2003;25:617–23.PubMedCrossrefGoogle Scholar

  • 9.

    Hou Z, Zhang Z, Wu H. Effect of Sanguis draxonis (a Chinese traditional herb) on the formation of insulin resistance in rats. Diabetes Res Clin Pract 2005;68:3–11.CrossrefPubMedGoogle Scholar

  • 10.

    Huang TH, Kota BP, Razmovski V, Roufogalis BD. Herbal or natural medicines as modulators of peroxisome proliferator-activated receptors and related nuclear receptors for therapy of metabolic syndrome. Basic Clin Pharmacol Toxicol 2005;96:3–14.PubMedCrossrefGoogle Scholar

  • 11.

    Kumar S, Singh GK, Kumar R, Bhatia NK, Awasthi CP. Variation in quality traits of pigeon pea. J Food Sci Tech 1991;28:174–8.Google Scholar

  • 12.

    Kirtikar KR, Basu BD. Illustrated Indian medicinal plants-their usage in ayurveda and unani medicines, 3rd ed. New Delhi: Sri Satguru Publisher, India, 2000:887.Google Scholar

  • 13.

    Bhadoriya SS, Ganeshpurkar A, Narwaria J, Rai G, Jain AP. Tamarindus indica: extent of explored potential. Pharmacog Rev 2011;5:73–81.CrossrefGoogle Scholar

  • 14.

    Iyer SR. Tamarindus indica L. In: Nambiar VP, Kutty CR, editor. Indian medicinal plants warrier. Madras, India: Orient Longman Ltd., 1995:235–6.Google Scholar

  • 15.

    Bhadoriya SS, Mishra V, Raut S, Ganeshpurkar A, Jain SK. Anti-inflammatory and antinociceptive activities of a hydroethanolic extract of Tamarindus indica leaves. Sci Pharm 2012;80:685–700.PubMedCrossrefGoogle Scholar

  • 16.

    Harbone JB. Phytochemical methods: a guide to modern techniques of plants analysis. London: Chapman and Hall, 1998:129.Google Scholar

  • 17.

    Singleton V, Rossi JJ. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Viticult 1965;16:144–58.Google Scholar

  • 18.

    Narayana KR, Reddy MS, Chaluvadi MR, Krishna DR. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential Indian. J Pharmacol 2001;33:2–16.Google Scholar

  • 19.

    Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 2002;10:178–82.Google Scholar

  • 20.

    OECD guideline 425. Guideline for testing of chemicals, acute oral toxicity. Environmental Health Safety Monograph. Series on Testing and Adjustment OECD guideline No. 425;2001:1.Google Scholar

  • 21.

    Swanton-Flat SK, Day C, Bailey CJ, Flatt PR. Traditional plant treatment for diabetes: studies in normal and Streptozotocin diabetic mice. Diabetologia 1990;33:462–4.PubMedCrossrefGoogle Scholar

  • 22.

    Ghai CL. A text book of practical physiology. New Delhi, India: Jaypee Brothers Medical Publishers, 1998:130.Google Scholar

  • 23.

    Day C, Catwright T, Provost J, Bailey CJ. Hypoglycaemic effect of Momordica charantia extracts. Planta Medica 1990;56:426–9.PubMedCrossrefGoogle Scholar

  • 24.

    Chattopadhyay RR, Sarkar SK, Ganguli S, Banerjee RN, Basa TK. Effect of extract of Vinca rosea on glucose utilization and glycogen deposition by isolated rat hemidiaphragm. Indian J Physiol Pharmacol 1992;36:137–8.PubMedGoogle Scholar

  • 25.

    Ong KW, Hsu A, Song L, Huang D, Huattan BK. Polyphenols-rich Vernonia amygdalina shows antidiabetic effects in Streptozotocin-induced diabetic rats. J Ethnopharmacol 2011;133:598–607.PubMedCrossrefGoogle Scholar

  • 26.

    Vasco C, Ruale J, Eldin A. Total phenolic compounds and antioxidant capacity of major fruits from Ecuador. Food Chem 2008;111:816–823.CrossrefGoogle Scholar

  • 27.

    Ahmad N, Mukhtar H. Green tea polyphenols and cancer: biologic mechanism and practical implications. Nutr Rev 1999;57:78–83.Google Scholar

  • 28.

    Rasu N, Saleem B, Nawaz R. Preliminary screening of four common plants of family Caesalpiniacae. Pak J Pharm Sci 1989;2:55–7.PubMedGoogle Scholar

  • 29.

    Khanzada SK, Shaikh W, Shahzadi S, Kazi TG, Usmanghani K, Kabir A, et al. Chemical constituents of Tamarindus indica medicinal plant in Sindh. Pak J Botany 2008;40:2553–5.Google Scholar

  • 30.

    Matsui T, Ebuchi S, Kobayashi M, Fukui K, Sugita K, Terahara N, et al. Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar Ayamurasaki can be achieved through the alpha-glucosidase inhibitory action. J Agric Food Chem 2002;50:7244–8.PubMedCrossrefGoogle Scholar

  • 31.

    Matsumoto N, Ishigaki F, Ishigaki A, Iwashina H, Hara Y. Reduction of blood glucose levels by tea catechin. Biosci Biotechnol Biochem 1993;57:525–7.CrossrefGoogle Scholar

  • 32.

    Abe K, Okada N, Tanabe H, Fukutomi R, Yasui K, Isemura M, et al. Effects of chronic ingestion of catechin-rich green tea on hepatic gene expression of gluconeogenic enzymes in rats. Biomed Res 2009;30:25–9.Web of SciencePubMedCrossrefGoogle Scholar

  • 33.

    Chakravarthy BK, Gupta S, Gode KD. Functional beta cell regeneration in the islets of pancreas in alloxan induced diabetic rats by epicatechin. Life Sci 1982;31:2693–7.PubMedCrossrefGoogle Scholar

  • 34.

    Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001;50:537–46.Google Scholar

  • 35.

    Colca JR, Kotagel M, Brooks CL, Lacy PE, Landt M, McDaniel ML. Alloxan inhibition of Ca2+ and calmodulin-dependent protein kinase in pancreatic islets. J Biol Chem 1985;225:7260–3.Google Scholar

  • 36.

    Musci I, Pragathi M. The nutritional significance of flavonoids, some physiological consideration. Experientia 1985;41: 930–5.Google Scholar

  • 37.

    Rang HP, Dale MM, Ritter JM, Moore PK. Pharmacology, 5th ed. New Delhi Lajpat Nagar, India: Published by Elsevier, a division of reed Elsevier Pvt. Ltd., 2003:41–2.Google Scholar

  • 38.

    Khan A, Safdar M. Role of diet, nutrients, spices and natural products in diabetes mellitus. Pak J Nutr 2003;2:1–12.CrossrefGoogle Scholar

  • 39.

    Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002, 277;34933–40.PubMedCrossrefGoogle Scholar

  • 40.

    Arion WJ, Canfield WK, Ramos F, Schindler PW, Burger HJ, Hemmerle H, et al. Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6 phosphatase. Arch Biochem Biophys 1997;339:315–22.CrossrefPubMedGoogle Scholar

About the article

Received: 2016-12-27

Accepted: 2017-06-21

Published Online: 2017-09-09

Published in Print: 2018-01-26

Author contributions: All the authors accept responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organisation(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 29, Issue 1, Pages 37–45, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2016-0193.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Salehi, Ata, V. Anil Kumar, Sharopov, Ramírez-Alarcón, Ruiz-Ortega, Abdulmajid Ayatollahi, Tsouh Fokou, Kobarfard, Amiruddin Zakaria, Iriti, Taheri, Martorell, Sureda, Setzer, Durazzo, Lucarini, Santini, Capasso, Ostrander, Atta-ur-Rahman, Choudhary, Cho, and Sharifi-Rad
Biomolecules, 2019, Volume 9, Number 10, Page 551
Brian L. Furman, Mayuren Candasamy, Subrat Kumar Bhattamisra, and Sajesh K. Veettil
Journal of Ethnopharmacology, 2019, Page 112264
Godwin C. Akuodor, Linus K. Eban, Gloria Ahunna Ajoku, Ndubuisi N. Nwobodo, Joseph L. Akpan, Basil C. Ezeokpo, Kenneth I. Nwadike, and Daniel OJ Aja
Journal of Basic and Clinical Physiology and Pharmacology, 2019, Volume 30, Number 2, Page 239
Walid Hamdy El-Tantawy and Abeer Temraz
Archives of Physiology and Biochemistry, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in