Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 29, Issue 5


Effects of artemisinin, with or without lumefantrine and amodiaquine on gastric ulcer healing in rat

Kazeem O. Ajeigbe
  • Gastrointestinal Secretion and Inflammation Research Unit, Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
  • Department of Physiology, Igbinedion University, Okada, Benin, Edo State, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamin O. Emikpe
  • Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Samuel Babafemi OlaleyeORCID iD: http://orcid.org/0000-0003-1480-0095
Published Online: 2018-04-27 | DOI: https://doi.org/10.1515/jbcpp-2017-0145



Antimalarial drugs have been shown to predispose the stomach to ulceration in rats. However, their role in the modulation of gastric ulcer healing is not known. The aim of the present study is to investigate the effect of artemisinin-based combination therapies on ulcer healing.


Gastric kissing ulcers were induced in 40 male albino rats (150–180 g) using 0.2 mL 50% acetic acid. One day after the ulcer induction, experimental rats were divided into four groups and treated once daily orally for 3 days as follows: (1) normal saline, (2) artemether-lumefantrine (2/12 mg/kg), (3) artesunate-amodiaquine (4/10 mg/kg), and (4) artesunate (2 mg/kg) only. A fifth group of 10 rats served as overall control with no ulcer induced and no treatment given. Ulcer healing was determined on days 4 and 7 post induction using ulcer score and planimetry.


Artesunate decreased ulcer severity by 12.5% and 52.0% on days 4 and 7, respectively. Significant increases in severity were observed in rats treated with artemether-lumefantrine (25.0% and 40.0%) and artesunate-amodiaquine (50.0% and 95.0%). Lipid peroxidation was decreased by artesunate by day 7 (27%; p<0.05) but increased in artemether-lumefantrine and artesunate-amodiaquine administered rats (63.6% and 55%; p<0.05). The activity of superoxide dismutase was reduced by artesunate-amodiaquine on day 7 (22%; p<0.05) but no effect in the artemether-lumefantrine treatment. Neutrophil infiltration, total leukocyte count, neutrophil-lymphocyte ratio, and C-reactive protein values were significantly increased in the artemether-lumefantrine and artesunate-amodiaquine treated groups when compared with the untreated ulcer control group (p<0.05). These variables were all reduced by artesunate (p<0.05).


This study revealed that although artesunate may be beneficial in gastric ulcer healing, its combination with either lumefantrine or amodiaquine may delay healing of gastric mucosal injury.

Keywords: amodiaquine; artemisinin combination therapy; gastric mucosal ulceration; inflammation; lumefantrine; oxidative stress


  • 1.

    Silva MI, Moura BA, Neto MR, Tomé AR, Rocha NF, de Carvalho AM, et al. Gastroprotective activity of isopulegol on experimentally induced gastric lesions in mice: investigation of possible mechanisms of action. Naunyn Schmiedebergs Arch Pharmacol 2009;380:233–45.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 2.

    Yandrapu H, Sarosiek J. Protective factors of the gastric and duodenal mucosa: an overview. Curr Gastroenterol Rep 2015;17:24.PubMedCrossrefGoogle Scholar

  • 3.

    Gonzalez AC, Tila FC, Zilton AA, Alena RA. Wound healing – a literature review. An Bras Dermatol 2016;91:614–20.CrossrefPubMedGoogle Scholar

  • 4.

    Zelickson MS, Bronder CM, Johnson BL, Camunas JA, Smith DE, Rawlinson D, et al. Helicobacter pylori is not the predominant etiology for peptic ulcers requiring operation. Am Surg 2011;11:1054–60.Google Scholar

  • 5.

    Malfertheiner P, Chan FK, McColl KE. Peptic ulcer disease. Lancet 2009;374:1449–61.CrossrefPubMedGoogle Scholar

  • 6.

    Barth H, Lorenz W, Troidl H. Effect of amodiaquine on gastric methylhistamine transferase and histamine-stimulated secretion. Br J Pharmacol 1975;55:321–7.CrossrefGoogle Scholar

  • 7.

    Etimita YO, Bisong, SA, Antai AB, Nku CO, Osim EE. Preliminary studies on effect of chloroquine phosphate on gastric acid secretion in rats. Niger J Physiol Sci 2005;20:69–73.PubMedGoogle Scholar

  • 8.

    Ajeigbe KO, Emikpe BO, Olaleye SB. Augmentation of gastric acid secretion by chloroquine and amodiaquine in the rat stomach. Niger J Physiol Sci 2012;27:89–94.PubMedGoogle Scholar

  • 9.

    Ajeigbe KO, Olaleye SB, Nwobodo EO. Effects of amodiaquine hydrochloride and artemisinin on indomethacin induced lipid peroxidation in rats. Pak J Biol Sci 2008;11:2154–8.PubMedCrossrefGoogle Scholar

  • 10.

    Olaleye SB, Ajeigbe KO, Emikpe BE. Effect of sulfadoxine-pyrimethamine and artesunate on gastric acid secretion and parietal cell mass in rats. Afr J Biomed Res 2012;15:23–8.Google Scholar

  • 11.

    Foglio MA, Dias PC, Antônio MA, Possenti A, Rodrigues RA, Silva EF, et al. Anti-ulcerogenic activity of some sesquiterpenelactones enriched fraction isolated from Artemisia annua. Planta Med 2002;68:515–8.CrossrefGoogle Scholar

  • 12.

    Goswami S, Bhakuni RS, Chinniah A, Pal A, Kar SK, Das PK. Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob Agent Chemother 2012;56:4594–607.CrossrefGoogle Scholar

  • 13.

    Festing S, Wilkinson R. The ethics of animal research. Talking point on the use of animals in scientific research. EMBO Reports 2007;8:526–30.Web of ScienceCrossrefPubMedGoogle Scholar

  • 14.

    Adjuik M, Agnamey P, Babiker A, Borrmann S, Brasseur P, Cisse M, et al. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomized, multi-centre trial. Lancet 2002;359:1365–71.CrossrefGoogle Scholar

  • 15.

    Arinaitwe E, Sandison TG, Wanzira H, Kakuru A, Homzy J, Kamya MR, et al. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for falciparum malaria: a longitudinal, randomized trial in young Ugandan children. Clin Infect Dis 2009;49:1629–37.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 16.

    Egunsola O, Oshikoya KA. Comparative safety of artemether-lumefantrine and other artemisinin-based combinations in children: a systematic review. Malaria Journal 2013;12:385.CrossrefWeb of SciencePubMedGoogle Scholar

  • 17.

    Nneli RO, Nwafia WC, Oji JO. Diets/dietary habits and certain gastrointestinal disorders in the tropics: a review. Niger J Physiol Sci 2007;22:1–13.PubMedGoogle Scholar

  • 18.

    Nwokediuko SC, Ijoma U, Obienu O, Picardo N. Time trends of upper gastrointestinal diseases in Nigeria. Ann Gastroenterol 2012;25:52–6.PubMedGoogle Scholar

  • 19.

    World Health Organisation. Malaria: overview of malaria treatment. Available at: http://www.who.int/malaria/areas/treatment/overview/en/. Accessed 10 August, 2017.

  • 20.

    Tsukimi Y, Okabe S. Recent advances in gastrointestinal pathophysiology: role of heat shock proteins in mucosal defense and ulcer healing. Biol Pharm Bull 2001;24:1–9.CrossrefPubMedGoogle Scholar

  • 21.

    Takagi K, Okabe S. The effects of drugs on the production and recovery processes of the stress ulcer. Jpn J Pharmacol 1968;18:9–11.PubMedCrossrefGoogle Scholar

  • 22.

    Hunter MI, Mohammed JB. Plasma antioxidants and lipid peroxidation products in Duchenne muscular dystrophy. Clin Chim Acta 1986;155:123–31.CrossrefPubMedGoogle Scholar

  • 23.

    Gutteridge JM, Wilkins S. Copper-dependent hydroxyl radical damage to ascorbic acid: formation of a thiobarbituric acid reactive product. FEBS Lett 1982;137:327–30.PubMedCrossrefGoogle Scholar

  • 24.

    Sinha KA. Colorimetric assay of catalase. Anal Biochem 1972;47:389–94.PubMedCrossrefGoogle Scholar

  • 25.

    Misra HP, Fridovich I. The role of superoxide ion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972;247:3170–5.Google Scholar

  • 26.

    Magwere T, Naik YS, Hasler TA. Effects of chloroquine treatment on antioxidants enzymes in rat liver and kidney. Free Rad Biol Med 1997;22:321–7.CrossrefGoogle Scholar

  • 27.

    Samuel OI, Thomas N, Ernest OU, Imelda NN, Elvis NS, Ifeyinwa E. Comparison of haematological parameters determined by the Sysmex KX-21N automated haematology analyzer and the manual counts. BMC Clin Pathol 2010;10:3.PubMedCrossrefGoogle Scholar

  • 28.

    Ehiaghe FA, Onyenekwe CC, Akosile CO, Okoye C, Maruf FA, Agbonlahor DE, et al. The expression pattern and role of interferon gamma genes in exhaustive exercise. J Adv Biol 2016;9:1903–10.Google Scholar

  • 29.

    Ogihara Y, Okabe IS. Mechanism by which indomethacin delays gastric ulcer healing in the rat: inhibited contraction of the ulcer base. Jpn J Pharmacol 1993;61:123–31.PubMedCrossrefGoogle Scholar

  • 30.

    Trevethick MA, Clayton NM, Strong P, Harman IW. Do infiltrating neutrophils contribute to the pathogenesis of indomethacin induced ulceration of the rat gastric antrum? Gut 1993;34:156–60.PubMedCrossrefGoogle Scholar

  • 31.

    Perasso A, Testino G, de Angelis P, Augeri C, de Grandi R. Gastric chief cell mass in chronic gastritis. Count and relationships to parietal cell mass and functional indices. Hepatogastroenterology 1991;38:63–6.PubMedGoogle Scholar

  • 32.

    Haber MM, Lopez I. Gastric histologic findings in patients with nonsteroidal anti-inflammatory drug-associated gastric ulcer. Mod Pathol 1991;12:592–8.Google Scholar

  • 33.

    Takagi K, Okabe S, Saziki RA. New method for the production of chronic gastric ulcer in rats and the effect of several drugs on its healing. Jpn J Pharmacol 1969;19:418–26.PubMedCrossrefGoogle Scholar

  • 34.

    Amagase K. An overview of acetic acid ulcer models and their utility for drug screening. Nippon Yakurigaku Zasshi 2003;122:73–92.CrossrefPubMedGoogle Scholar

  • 35.

    Kobayashi T, Ohta Y, Yoshino J, Nakazawa T. Teprenone promotes the healing of acetic acid-induced chronic gastric ulcers in rats by inhibiting neutrophil infiltration and lipid peroxidation in ulcerated gastric tissues. Pharmacol Res 2001;43:23–30.PubMedCrossrefGoogle Scholar

  • 36.

    Ogawa K, Oyagi A, Tanaka J, Kobayashi S, Hara H. The protective effect and action mechanism of Vaccinium myrtillus L. on gastric ulcer in mice. Phytother Res 2011;25:1160–65.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 37.

    Dovi JV, He LK, DiPietro LA. Accelerated wound closure in neutrophil-depleted mice. J Leukoc Biol 2004;73:448–55.Google Scholar

  • 38.

    Musumba C, Pritchard DM, Pirmohamed M. Review article: cellular and molecular mechanisms of NSAIDs-induced peptic ulcers. Aliment Pharmacol Ther 2009;30:517–31.CrossrefGoogle Scholar

  • 39.

    Tarnawski A, Hollander D, Stachura J. Vascular and microvascular changes – key factors in the development of acetic acid-induced gastric ulcers in rats. J Clin Gastroenterol 1990;12:S148–57.CrossrefPubMedGoogle Scholar

  • 40.

    Nagatomi R. The implication of alterations in leukocyte subset counts on immune function. Exerc Immunol Rev 2006;12:54–71.PubMedGoogle Scholar

  • 41.

    De Jager CP, Wijk PT, Mathoera RB, De Jongh-Leuvenink J, Poll VT, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care 2010;14:R192.CrossrefWeb of ScienceGoogle Scholar

  • 42.

    Huang J, Hunt RH, Subbaramiah S. Role of H. Pylori infection and non-sterodial anti-inflammatory drugs in peptic-ulcer disease: a meta-analysis. Lancet 2002;359:14–32.CrossrefGoogle Scholar

  • 43.

    Jafarzadeh A, Akbarpoor V, Nabizadeh M, Nemati M, Rezayati MT. Total leukocyte counts and neutrophil-lymphocyte count ratios among Helicobacter pylori-infected patients with peptic ulcers: independent of bacterial CagA status. Southeast Asian J Trop Med Public Health 2013;44:82–7.PubMedGoogle Scholar

  • 44.

    Ubukata H, Motohashi G, Tabuchi T, Nagata H, Konishi S. Evaluations of interferon-gamma/interleukin-4 ratio and neutrophil/lymphocyte ratio as prognostic indicators in gastric cancer patients. J Surg Oncol 2010;102:742–7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 45.

    Hawley TS, Burns BF, Hawley RG. Leukocytosis in mice following long-term reconstitution with genetically-modified bone marrow cells constitutively expressing interleukin 1 alpha or interleukin 6. Leuk Res 1991;15:659–73.CrossrefPubMedGoogle Scholar

  • 46.

    Droogendijk J, Beukers R, Berendes PB, Tax MG, Sonneveld P, Levin MD. Screening for gastrointestinal malignancy in patients with iron deficiency anemia by general practitioners: an observational study. Scand J Gastroenterol 2011;46:1105–10.Web of SciencePubMedCrossrefGoogle Scholar

  • 47.

    Boehme MW, Autschbach F, Ell C, Raeth U. Prevalence of silent gastric ulcer, erosions or severe acute gastritis in patients with type 2 diabetes mellitus – a cross-sectional study. Hepatogastroenterology 2007;54:643–8.PubMedGoogle Scholar

  • 48.

    Ansar W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res 2013;56:131–42.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 49.

    Wu CW, Wang SR, Chao MF, Wu TC, Lui WY, Peng FK, et al. Serum interleukin-6 levels reflect disease status of gastric cancer. Am J Gastroenterol 1996;91:1417–22.PubMedGoogle Scholar

About the article

Received: 2017-08-29

Accepted: 2018-03-17

Published Online: 2018-04-27

Published in Print: 2018-09-25

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 29, Issue 5, Pages 515–524, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2017-0145.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in