Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu / Tam, Joseph


CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

Online
ISSN
2191-0286
See all formats and pricing
More options …
Volume 30, Issue 3

Issues

Neuroprotective role of 6-Gingerol-rich fraction of Zingiber officinale (Ginger) against acrylonitrile-induced neurotoxicity in male Wistar rats

Ebenezer Olatunde Farombi
  • Corresponding author
  • Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria, Phone: +2348023470333, Fax: 234-2-8103043
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amos Olalekan Abolaji
  • Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Babatunde Oluwafemi Adetuyi
  • Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olaide Awosanya
  • Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mobolaji Fabusoro
  • Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-22 | DOI: https://doi.org/10.1515/jbcpp-2018-0114

Abstract

Background

Acrylonitrile (AN) is a neurotoxin that is widely used to manufacture synthetic fibres, plastics and beverage containers. Recently, we reported the ameliorative role of 6-gingerol-rich fraction from Zingiber officinale (Ginger, GRF) on the chlorpyrifos-induced toxicity in rats. Here, we investigated the protective role of GRF on AN-induced brain damage in male rats.

Methods

Male rats were orally treated with corn oil (2 mL/kg, control), AN (50 mg/kg, Group B), GRF (200 mg/kg, Group C), AN [50 mg/kg+GRF (100 mg/kg) Group D], AN [(50 mg/kg)+GRF (200 mg/kg) Group E] and AN [(50 mg/kg)+N-acetylcysteine (AC, 50 mg/kg) Group F] for 14 days. Then, we assessed the selected markers of oxidative damage, antioxidant status and inflammation in the brain of rats.

Results

The results indicated that GRF restored the AN-induced elevations of brain malondialdehyde (MDA), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and Nitric Oxide (NO) levels. GRF also prevented the AN-induced depletion of brain glutathione (GSH) level and the activities of Glutathione S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in rats (p<0.05). Furthermore, GRF prevented the AN-induced cerebral cortex lesion and increased brain immunohistochemical expressions of Caspases-9 and -3.

Conclusions

Our data suggest that GRF may be a potential therapeutic agent in the treatment of AN-induced model of brain damage.

Keywords: inflammation; neurotoxins; oxidative damage; ROS

References

  • 1.

    Cole P, Mandel JS, Collins JJ. Acrylonitrile and cancer: a review of the epidemiology. Regul Toxicol Pharmacol 2008;52:342–51.CrossrefGoogle Scholar

  • 2.

    Rongzhu L, Suhua W, Guangwei X, Chunlan R, Fangan H, Suxian C, et al. Effects of acrylonitrile on antioxidant status of different brain regions in rats. Neurochem Int 2009;55:552–7.PubMedCrossrefGoogle Scholar

  • 3.

    Rubio R, Galceran MT, Rauret G. Nitriles and isonitriles as interferents in cyanide determination in polluted water. Analyst 1990;115:959–63.PubMedCrossrefGoogle Scholar

  • 4.

    Mohamadin AM, El-Demerdash E, El-Beshbishy HA, Abdel-Naim AB. Acrylonitrile-induced toxicity and oxidative stress in isolated rat colonocytes. Environ Toxicol Pharmacol 2005;19:371–7.PubMedCrossrefGoogle Scholar

  • 5.

    OSHA (Occupational Safety and Health Administration). Notice issuing final standard for acrylonitrile. Federal Register 1978;43:457–62.Google Scholar

  • 6.

    Gumperlein I, Fischer E, Dietrich-Gumperlein G, Karrasch S, Nowak D, Jorres RA, et al. Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: an experimental exposure study in human volunteers. Indoor Air 2018;28:611–23.CrossrefPubMedGoogle Scholar

  • 7.

    Zimmerman SD, Marsh GM, Youk AO, Talbot E. Evaluation of potential confounding by smoking in the presence of misclassified smoking data in a cohort study of workers exposed to acrylonitrile. J Occup Environ Med 2015;57:146–51.CrossrefGoogle Scholar

  • 8.

    Tarskikh MM, Klimatskaia LG. Nervous system disorders in workers engaged into acrylonitrile production. Med Tr Prom Ekol 2008;10:12–5.Google Scholar

  • 9.

    Marsh GM, Zimmerman SD. Mortality among chemical plant workers exposed to acrylonitrile: 2011 follow-up. J Occup Environ Med 2015;57:134–45.PubMedCrossrefGoogle Scholar

  • 10.

    Kamendulis LM, Jiang J, Xu Y, Klaunig JE. Induction of oxidative stress and oxidative damage in rat glial cells by acrylonitrile. Carcinogenesis 1999;20:1555–60.PubMedCrossrefGoogle Scholar

  • 11.

    Ghanayern BI, Nyska A, Haseman JK, Bucher JR. Acrylonitrile is a multisite carcinogen in male and female B6C3F1 mice. Toxicol Sci 2002;68:59–68.PubMedCrossrefGoogle Scholar

  • 12.

    Williams GM, Kobets T, Duan JD, Iatropoulos MJ. Assessment of DNA binding and oxidative DNA damage by acrylonitrile in two rat target tissues of carcinogenicity: implications for the mechanism of action. Chem Res Toxicol 2017;30:1470–80.PubMedCrossrefGoogle Scholar

  • 13.

    Parent A, Carpenter MB. Carpenter’s human neuroanatomy. Williams & Wilkins, 1995. ISBN 978-0-683-06752–1.Google Scholar

  • 14.

    Gagnaire F, Marignac B, Baonnet P. Relative neurotoxicological properties of five unsaturated aliphatic nitriles in rats. J Appl Toxicol 1998;18:25–31.PubMedCrossrefGoogle Scholar

  • 15.

    Caito SW, Yu Y, Aschner M. Differential inflammatory response to acrylonitrile in rat primary astrocytes and microglia. Neurotoxicology 2014;42:1–7.CrossrefPubMedGoogle Scholar

  • 16.

    Esmat A, El-Demerdash E, El-Mesallamy H, Abdel-Naim AB. Toxicity and oxidative stress of acrylonitrile in rat primary glial cells: preventive effects of N-acetylcysteine. Toxicol Lett 2007;171:111–8.PubMedCrossrefGoogle Scholar

  • 17.

    El-Sayed SM, Abo-Salem AO, Abd-Ellah MF, Abd-Alla GF. Hesperidin, an antioxidant flavonoid, prevents acrylonitrile-induced oxidative stress in rat brain. J Biochem Mol Toxicol 2008;22:268–73.CrossrefPubMedGoogle Scholar

  • 18.

    Pu X, Kamendulis LM, Klaunig JE. Acrylonitrile-induced oxidative stress and oxidative DNA damage in male Sprague-Dawley rats. Toxicol Sci 2009;111:64–71.PubMedCrossrefGoogle Scholar

  • 19.

    Guangwei X, Rongzhu L, Wenrong X, Suhua W, Xiaowu Z, Shizhong W, et al. Curcumin pretreatment protects against acute acrylonitrile-induced oxidative damage in rats. Toxicology 2010;267:140–6.PubMedCrossrefGoogle Scholar

  • 20.

    Jakubowski M, Linhart I, Pielas G, Kopecky J. 2-Cyanoethylmercapturic acid (CEMA) in the urine as a possible indicator of exposure to acrylonitrile. Brit J Ind Med 1987;44:834–40.Google Scholar

  • 21.

    Zheng J, Zhou Y, Li Y, Xu DP, Li S, Li HB. Spices for prevention and treatment of cancers. Nutrients 2016;8:495–530.CrossrefGoogle Scholar

  • 22.

    Samad MB, Mohsin MN, Razu BA, Hossain MT, Mahzabeen S, Unnoor N, et al. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement Altern Med 2017;17:395.PubMedGoogle Scholar

  • 23.

    Dugasani S, Pichikac MR, Nadarajahc VD, Balijepalli BK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 2010;127:515–20.CrossrefPubMedGoogle Scholar

  • 24.

    El-Ghorab AH, Nauman M, Anjum FM, Hussain S, Nadeem M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J Agric Food Chem 2010;58:8231–7.CrossrefPubMedGoogle Scholar

  • 25.

    Ajayi BO, Adedara IA, Farombi EO. Pharmacological activity of 6-gingerol in dextran sulphate sodium-induced ulcerative colitis in BALB/c mice. Phytother Res 2015;29:566–72.CrossrefPubMedGoogle Scholar

  • 26.

    Abolaji AO, Ojo M, Afolabi TT, Arowoogun MD, Nwawolor D, Farombi EO. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem Biol Interact 2017;270:15–23.CrossrefPubMedGoogle Scholar

  • 27.

    Almada da Silva J, Becceneri AB, Sanches Mutti H, Moreno Martin AC, Fernandes da Silva MF, fernandes JB, et al. Purification and differential biological effects of ginger-derived substances on normal and tumour cell lines. J Chromatogr B 2012;903: 157–62.CrossrefGoogle Scholar

  • 28.

    Salihu M, Ajayi BO, Adedara IA, de Souza D, Rocha JB, Farombi EO. 6-Gingerol-rich fraction from Zingiber officinale ameliorates carbendazim-induced endocrine disruption and toxicity in testes and epididymis of rats. Andrologia 2016;49. doi:10.1111/and.12658.PubMedGoogle Scholar

  • 29.

    De Vries N, De Flora S. N-acetyl-l-cysteine. J Cell Biochem 1993;17:270–7.Google Scholar

  • 30.

    Salihu M, Ajayi BO, Adedara IA, Farombi EO. 6-Gingerol-rich fraction from Zingiber officinale prevents hematotoxicity and oxidative damage in kidney and liver of rats exposed to carbendazim. J Diet Suppl 2016;13:433–48.CrossrefPubMedGoogle Scholar

  • 31.

    Abdelmagid SM, Barr AE, Rico M, Amin M, Litvin J, Popoff SN, et al. Performance of repetitive tasks induces decreased grip strength and increased fibrogenic proteins in skeletal muscle: role of force and inflammation. PLoS One 2012;7:e38359.PubMedCrossrefGoogle Scholar

  • 32.

    Fraenkel GS, Gunn DL. The orientation of animals – kineses, taxes and compass reactions, Expanded Edition. Dover Publications Inc., 1961:384.Google Scholar

  • 33.

    Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972;247:3170–5.Google Scholar

  • 34.

    Clairborne A. Catalase activity. In: Greewald AR, editor. Handbook of methods for oxygen radical research. Boca Raton, FL: CRC Press, 1995:237–42.Google Scholar

  • 35.

    Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973;179:588–90.PubMedCrossrefGoogle Scholar

  • 36.

    Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974;74:151–69.Google Scholar

  • 37.

    Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem 1974;249:7130–9.Google Scholar

  • 38.

    Buege JA, Aust SD. Microsomal lipid peroxidation. Method Enzymol 1978;30:302–10.Google Scholar

  • 39.

    Perez-Severiano F, Santamaria A, Pedraza-Chaverri J, Medina-Campos ON, Rios C, Segovia J. Increased formation of reactive oxygen species, but no changes in glutathione peroxidase activity in striata of mice transgenic for the Huntington’s disease mutation. Neurochem Res 2004;29:729–33.CrossrefPubMedGoogle Scholar

  • 40.

    Abolaji AO, Kamdem JP, Lugokenski TH, Nascimento TK, Waczuk EP, Farombi EO, et al. Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster. Free Radic Biol Med 2014;71:99–108.PubMedCrossrefGoogle Scholar

  • 41.

    Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54.PubMedCrossrefGoogle Scholar

  • 42.

    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite and (15N) nitrate in biological fluids. Anal Biochem 1982;126:131–8.CrossrefPubMedGoogle Scholar

  • 43.

    Bancroft JD, Gamble M. Theory and practice of histology techniques, 6th ed. Churchill Livingstone: Elsevier, 2008:83–134.Google Scholar

  • 44.

    Plewka D, Kowalczyk AE, Jakubiec-Bartnik B, Morek M, Bogunia E, Kmiec A, et al. Immunohistochemical visualization of pro-inflammatory cytokines and enzymes in ovarian tumours. Folia Histochem Cytobiol 2014;52:124–37.CrossrefPubMedGoogle Scholar

  • 45.

    Rongzhu L, Suhua W, Guangwei X, Fangan H, Ziqiang C, Fusheng J, et al. Neurobehavioral alterations in rats exposed to acrylonitrile in drinking water. Hum Exp Toxicol 2007;26:179–84.CrossrefPubMedGoogle Scholar

  • 46.

    Abolaji AO, Toloyai PE, Odeleye TD, Akinduro S, Teixeira S, Rocha JB, et al. Hepatic and renal toxicological evaluations of an industrial ovotoxic chemical, 4-vinylcyclohexene diepoxide, in both sexes of Wistar rats. Environ Toxicol Pharmacol 2016;45:28–40.PubMedCrossrefGoogle Scholar

  • 47.

    Sato M, Hirasawa F, Ogata M, Takizawa Y, Kojima H, Yoshida T. Distribution and accumulation of [2,3-14C] acrylonitrile in rat after single injection. Ecotoxicol Environ Saf 1982;6:489–94.PubMedCrossrefGoogle Scholar

  • 48.

    Weber C, Jakobsen TS, Mortensen SA, Paulsen G, Hølmer G. Effect of dietary coenzyme Q10 as an antioxidant in human plasma. Mol Aspects Med 1994;15:97–102.CrossrefGoogle Scholar

  • 49.

    Patel M. Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci 2016;37:768–78.PubMedCrossrefGoogle Scholar

  • 50.

    Leng G, Lewalter J. Polymorphism of glutathione S-transferases and susceptibility to acrylonitrile and dimethylsulfate in cases of intoxication. Toxicol Lett 2002;134:209–17.CrossrefPubMedGoogle Scholar

  • 51.

    Fennell TR, Kedderis GL, Sumner SC. Urinary metabolites of (1,2,3-13C) acrylonitrile in rats and mice detected by 13C nuclear magnetic resonance spectroscopy. Chem Res Toxicol 1991;4:678–87.CrossrefPubMedGoogle Scholar

  • 52.

    Ahmed AE, Farooqui YH, Upreti RK, El-Shabrawy O. Distribution and covalent interactions of [1–14C] acrylonitrile in the rat. Toxicology 1982;23:159–75.CrossrefPubMedGoogle Scholar

  • 53.

    Tanabe K, Kozawa O, Iida H. cAMP/PKA enhances interleukin-1β-induced interleukin-6 synthesis through STAT3 in glial cells. Cell Signal 2016;28:19–24.CrossrefPubMedGoogle Scholar

  • 54.

    Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, et al. Interleukin-6, a mental cytokine. Brain Res Rev 2011;67:157–83.CrossrefPubMedGoogle Scholar

  • 55.

    Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012;8:1254–66.CrossrefGoogle Scholar

  • 56.

    Thorsteinsdottir S, Gudjonsson T, Nielsen OH, Vainer B, Seidelin JB. Pathogenesis and biomarkers of carcinogenesis in ulcerative colitis. Nat Rev Gastroenterol Hepatol 2011;8:395–404.PubMedCrossrefGoogle Scholar

  • 57.

    Papadakis KA, Targan SR. The role of chemokines and chemokine receptors in mucosal inflammation. Inflamm Bowel Dis 2000;6:303–13.PubMedCrossrefGoogle Scholar

  • 58.

    Kuranaga E, Miura M. Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 2007;17:135–44.CrossrefPubMedGoogle Scholar

  • 59.

    D’Amelio M, Cavallucci V, Cecconi F. Neuronal caspase-3 signalling: not only cell death. Cell Death Differ 2010;17:1104–14.CrossrefGoogle Scholar

  • 60.

    Lebelt A, Rutkowski R, Och W, Jaczun K, Dziemiańczyk-Pakieła D, Milewski R, et al. Survivin, caspase-3 and MIB-1 expression in astrocytic tumors of various grades. Adv Med Sci 2016;61: 237–43.CrossrefPubMedGoogle Scholar

  • 61.

    Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke 2009;40:331–9.Google Scholar

  • 62.

    Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci 2011;34:646–56.CrossrefPubMedGoogle Scholar

  • 63.

    Watcharasit P, Suntararuks S, Visitnonthachai D, Thiantanawat A, Satayavivad J. Acrylonitrile induced apoptosis via oxidative stress in neuroblastoma SH-SY5Y cell. J Appl Toxicol 2010;30:649–55.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-06-27

Accepted: 2018-11-17

Published Online: 2018-12-22


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organisation(s) played no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 30, Issue 3, 20180114, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2018-0114.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in