Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Haim, Abraham / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu

6 Issues per year

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 28, Issue 3


Isolated heart models for studying cardiac electrophysiology: a historical perspective and recent advances

Jie Ming Yeo / Vivian Tse / Judy Kung
  • School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hiu Yu Lin
  • School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yee Ting Lee
  • School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joseph Kwan
  • Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bryan P. Yan
  • Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
  • Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gary Tse
  • Corresponding author
  • Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
  • Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-01-07 | DOI: https://doi.org/10.1515/jbcpp-2016-0110


Experimental models used in cardiovascular research range from cellular to whole heart preparations. Isolated whole hearts show higher levels of structural and functional integration than lower level models such as tissues or cellular fragments. Cardiovascular diseases are multi-factorial problems that are dependent on highly organized structures rather than on molecular or cellular components alone. This article first provides a general introduction on the animal models of cardiovascular diseases. It is followed by a detailed overview and a historical perspective of the different isolated heart systems with a particular focus on the Langendorff perfusion method for the study of cardiac arrhythmias. The choice of species, perfusion method, and perfusate composition are discussed in further detail with particular considerations of the theoretical and practical aspects of experimental settings.

Keywords: animal models; cardiac electrophysiology; Langendorff mode; perfusate composition; perfusion methods; species differences; working mode


  • 1.

    Hearse DJ, Sutherland FJ. Experimental models for the study of cardiovascular function and disease. Pharmacol Res 2000;41:597–603.Google Scholar

  • 2.

    Fink M, Noble D. Pharmacodynamic effects in the cardiovascular system: the modeller's view. Basic Clin Pharmacol Toxicol 2010;106:243–9.Google Scholar

  • 3.

    Hu Z, Chen Z, Wang Y, Jiang J, Tse G, Xu W, et al. Effects of granulocyte colony-stimulating factor on rabbit carotid and swine heart models of chronic obliterative arterial disease. Mol Med Rep 2016.Google Scholar

  • 4.

    Szel T, Koncz I, Antzelevitch C. Cellular mechanisms underlying the effects of milrinone and cilostazol to suppress arrhythmogenesis associated with Brugada syndrome. Heart Rhythm 2013;10:1720–7.Google Scholar

  • 5.

    Palatinus JA, Gourdie RG. Diabetes increases cryoinjury size with associated effects on Cx43 gap junction function and phosphorylation in the mouse heart. J Diabetes Res 2016;2016:8789617.Google Scholar

  • 6.

    George SA, Sciuto KJ, Lin J, Salama ME, Keener JP, Gourdie RG, et al. Extracellular sodium and potassium levels modulate cardiac conduction in mice heterozygous null for the Connexin43 gene. Pflugers Arch 2015;467:2287–97.Google Scholar

  • 7.

    Veeraraghavan R, Gourdie RG, Poelzing S. Mechanisms of cardiac conduction: a history of revisions. Am J Physiol Heart Circ Physiol 2014;306:H619–27.Google Scholar

  • 8.

    Gourdie RG, Green CR, Severs NJ, Anderson RH, Thompson RP. Evidence for a distinct gap-junctional phenotype in ventricular conduction tissues of the developing and mature avian heart. Circ Res 1993;72:278–89.Google Scholar

  • 9.

    Moses Hr, Dorsey ER, Matheson DH, Thier S. Financial anatomy of biomedical research. J Am Med Assoc 2005;294:1333–42.Google Scholar

  • 10.

    Hall BH. The financing of research and development. Oxf Rev Econ Policy 2002;18:35–51.Google Scholar

  • 11.

    Paton W. Man and mouse: animals in medical research. Oxford: Oxford University Press, 1984.Google Scholar

  • 12.

    Tse G, Wong ST, Tse V, Yeo JM. Depolarization vs. repolarization: what is the mechanism of ventricular arrhythmogenesis underlying sodium channel haploinsufficiency in mouse hearts? Acta Physiol (Oxf) 2016;218:234–5.Google Scholar

  • 13.

    Tse G, Wong ST, Tse V, Yeo JM. Variability in local action potential durations, dispersion of repolarization and wavelength restitution in aged wild-type and Scn5a+/– mouse hearts modelling human Brugada syndrome. J Geriatr Cardiol 2016.Google Scholar

  • 14.

    Tse G, Wong ST, Tse V, Yeo JM. Determination of action potential wavelength restitution in Scn5a+/– mouse hearts modelling human Brugada syndrome. J Geriatr Cardiol 2016.Google Scholar

  • 15.

    Tse G, Li KH, Laxton V, Chan YW, Keung W, Li RA, et al. Electrophysiological mechanisms of Brugada syndrome: insights from pre-clinical and clinical studies. Front Physiol 2016;7:467.Google Scholar

  • 16.

    Xu A, Huang Y. A Tireless Giant in Vascular Research. J Cardiovasc Pharmacol 2016;67:359–60.Google Scholar

  • 17.

    Tse G, Yan BP, Chan YW, Tian XY, Huang Y. Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front Physiol 2016;7:313.Google Scholar

  • 18.

    Zhang H, Liu J, Qu D, Wang L, Luo JY, Lau CW, et al. Inhibition of miR-200c restores endothelial function in diabetic mice through suppression of COX-2. Diabetes 2016;65:1196–207.Google Scholar

  • 19.

    Zheng H, Pu SY, Fan XF, Li XS, Zhang Y, Yuan J, et al. Treatment with angiotensin-(1-9) alleviates the cardiomyopathy in streptozotocin-induced diabetic rats. Biochem Pharmacol 2015;95:38–45.Google Scholar

  • 20.

    Zhang Y, Liu J, Luo JY, Tian XY, Cheang WS, Xu J, et al. Upregulation of angiotensin (1-7)-mediated signaling preserves endothelial function through reducing oxidative stress in diabetes. Antioxid Redox Signal 2015;23:880–92.Google Scholar

  • 21.

    Murugan D, Lau YS, Lau WC, Mustafa MR, Huang Y. Angiotensin 1-7 protects against angiotensin II-induced endoplasmic reticulum stress and endothelial dysfunction via Mas receptor. PLoS One 2015;10:e0145413.Google Scholar

  • 22.

    Cheang WS, Tian XY, Wong WT, Lau CW, Lee SS, Chen ZY, et al. Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5' adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor delta pathway. Arterioscler Thromb Vasc Biol 2014;34:830–6.Google Scholar

  • 23.

    London B. Mouse models of cardiac arrhythmias. In: Saunders JH, editor. Cardiac electrophysiology: from cell to bedside, 4th ed. Philadelphia, PA, 2004:433–43.Google Scholar

  • 24.

    London B. Cardiac arrhythmias: from (transgenic) mice to men. J Cardiovasc Electrophysiol 2001;12:1089–91.Google Scholar

  • 25.

    Baker LC, London B, Choi BR, Koren G, Salama G. Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. Circ Res 2000;86:396–407.Google Scholar

  • 26.

    Wang L, Swirp S, Duff H. Age-dependent response of the electrocardiogram to K(+) channel blockers in mice. Am J Physiol Cell Physiol 2000;278:C73–80.Google Scholar

  • 27.

    Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol 2000;525:285–98.Google Scholar

  • 28.

    Bers DM. Cardiac excitation-contraction coupling. Nature 2002;415:198–205.Google Scholar

  • 29.

    Bers DM, Despa S. Na/K-ATPase – an integral player in the adrenergic fight-or-flight response. Trends Cardiovasc Med 2009;19:111–8.Google Scholar

  • 30.

    Kettlewell S, Burton FL, Smith GL, Workman AJ. Chronic myocardial infarction promotes atrial action potential alternans, afterdepolarizations, and fibrillation. Cardiovasc Res 2013;99:215–24.Google Scholar

  • 31.

    Workman AJ, Kane KA, Rankin AC. Rate-dependency of action potential duration and refractoriness in isolated myocytes from the rabbit AV node and atrium. J Mol Cell Cardiol 2000;32:1525–37.Google Scholar

  • 32.

    Workman AJ, Kane KA, Rankin AC. Ionic basis of a differential effect of adenosine on refractoriness in rabbit AV nodal and atrial isolated myocytes. Cardiovasc Res 1999;43:974–84.Google Scholar

  • 33.

    Workman AJ, Marshall GE, Rankin AC, Smith GL, Dempster J. Transient outward K+ current reduction prolongs action potentials and promotes afterdepolarisations: a dynamic-clamp study in human and rabbit cardiac atrial myocytes. J Physiol 2012;590:4289–305.Google Scholar

  • 34.

    Hsieh YC, Lin SF, Huang JL, Hung CY, Lin JC, Liao YC, et al. Moderate hypothermia (33C) decreases the susceptibility to pacing-induced ventricular fibrillation compared with severe hypothermia (30C) by attenuating spatially discordant alternans in isolated rabbit hearts. Acta Cardiol Sin 2014;30:455–65.Google Scholar

  • 35.

    Osadchii OE. Impact of hypokalemia on electromechanical window, excitation wavelength and repolarization gradients in guinea-pig and rabbit hearts. PLoS One 2014;9:e105599.Google Scholar

  • 36.

    Ng GA, Cobbe SM, Smith GL. Non-uniform prolongation of intracellular Ca2+ transients recorded from the epicardial surface of isolated hearts from rabbits with heart failure. Cardiovasc Res 1998;37:489–502.Google Scholar

  • 37.

    Chang C-J, Cheng C-C, Chen Y-C, Kao Y-H, Chen S-A, Chen Y-J. Gap junction modifiers regulate electrical activities of the sinoatrial node and pulmonary vein: therapeutic implications in atrial arrhythmogenesis. Int J Cardiol 2016;221:529–36.Google Scholar

  • 38.

    Osadchii OE. Effects of ventricular pacing protocol on electrical restitution assessments in guinea-pig heart. Exp Physiol 2012;97:807–21.Google Scholar

  • 39.

    Osadchii OE. Flecainide attenuates rate adaptation of ventricular repolarization in guinea-pig heart. Scand Cardiovasc J 2016;50:28–35.Google Scholar

  • 40.

    Osadchii OE. Impaired epicardial activation-repolarization coupling contributes to the proarrhythmic effects of hypokalaemia and dofetilide in guinea pig ventricles. Acta Physiol (Oxf) 2014;211:48–60.Google Scholar

  • 41.

    Osadchii OE. Flecainide-induced proarrhythmia is attributed to abnormal changes in repolarization and refractoriness in perfused guinea-pig heart. J Cardiovasc Pharmacol 2012;60:456–66.Google Scholar

  • 42.

    Osadchii OE. Dofetilide promotes repolarization abnormalities in perfused Guinea-pig heart. Cardiovasc Drugs Ther 2012;26:489–500.Google Scholar

  • 43.

    Osadchii OE. Quinidine elicits proarrhythmic changes in ventricular repolarization and refractoriness in guinea-pig. Can J Physiol Pharmacol 2013;91:306–15.Google Scholar

  • 44.

    Osadchii OE, Bentzen BH, Olesen SP. Chamber-specific effects of hypokalaemia on ventricular arrhythmogenicity in isolated, perfused guinea-pig heart. Exp Physiol 2009;94:434–46.Google Scholar

  • 45.

    Osadchii OE, Olesen SP. Electrophysiological determinants of hypokalaemia-induced arrhythmogenicity in the guinea-pig heart. Acta Physiol (Oxf) 2009;197:273–87.Google Scholar

  • 46.

    Brunner M, Peng X, Liu GX, Ren XQ, Ziv O, Choi BR, et al. Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J Clin Invest 2008;118:2246–59.Google Scholar

  • 47.

    Hondeghem LM. Disturbances of cardiac wavelength and repolarization precede Torsade de Pointes and ventricular fibrillation in Langendorff perfused rabbit hearts. Prog Biophys Mol Biol 2016;121:3–10.Google Scholar

  • 48.

    Lu HR, Yan G-X, Gallacher DJ. A new biomarker – index of Cardiac Electrophysiological Balance (iCEB) – plays an important role in drug-induced cardiac arrhythmias: beyond QT-prolongation and Torsades de Pointes (TdPs). J Pharmacol Toxicol Methods 2013;68:250–9.Google Scholar

  • 49.

    Milberg P, Reinsch N, Osada N, Wasmer K, Monnig G, Stypmann J, et al. Verapamil prevents torsade de pointes by reduction of transmural dispersion of repolarization and suppression of early afterdepolarizations in an intact heart model of LQT3. Basic Res Cardiol 2005;100:365–71.Google Scholar

  • 50.

    Tse G, Ali A, Prasad SK, Vassiliou V, Raphael CE. Atypical case of post-partum cardiomyopathy: an overlap syndrome with arrhythmogenic right ventricular cardiomyopathy? BJR Case Rep 2015;1:20150182.Google Scholar

  • 51.

    Tse G, Ali A, Alpendurada F, Prasad S, Raphael CE, Vassiliou V. Tuberculous constrictive pericarditis. Res Cardiovasc Med 2015;4:e29614.Google Scholar

  • 52.

    Vassiliou V, Chin C, Perperoglou A, Tse G, Ali A, Raphael C, et al. 93 ejection fraction by cardiovascular magnetic resonance predicts adverse outcomes post aortic valve replacement. Heart 2014;100:A53–4.Google Scholar

  • 53.

    Vaillant F, Magat J, Bour P, Naulin J, Benoist D, Loyer V, et al. Magnetic resonance-compatible model of isolated working heart from large animal for multimodal assessment of cardiac function, electrophysiology and metabolism. Am J Physiol Heart Circ Physiol 2016;310:H1371–80.Google Scholar

  • 54.

    Elkins RC. Is tissue-engineered heart valve replacement clinically applicable? Curr Cardiol Rep 2003;5:125–8.Google Scholar

  • 55.

    Rivard AL, Suwan PT, Imaninaini K, Gallegos RP, Bianco RW. Development of a sheep model of atrial fibrillation for preclinical prosthetic valve testing. J Heart Valve Dis 2007;16:314–23.Google Scholar

  • 56.

    Gallegos RP, Nockel PJ, Rivard AL, Bianco RW. The current state of in-vivo pre-clinical animal models for heart valve evaluation. J Heart Valve Dis 2005;14:423–32.Google Scholar

  • 57.

    Stengl M. Experimental models of spontaneous ventricular arrhythmias and of sudden cardiac death. Physiol Res 2010;59:S25–31.Google Scholar

  • 58.

    Chen Z, Sun B, Tse G, Jiang J, Xu W. Reversibility of both sinus node dysfunction and reduced HCN4 mRNA expression level in an atrial tachycardia pacing model of tachycardia-bradycardia syndrome in rabbit hearts. Int J Clin Exp Pathol 2016;9:8526–8531.Google Scholar

  • 59.

    Workman AJ, MacKenzie I, Northover BJ. Do KATP channels open as a prominent and early feature during ischaemia in the Langendorff-perfused rat heart? Basic Res Cardiol 2000;95:250–60.Google Scholar

  • 60.

    Workman AJ, MacKenzie I, Northover BJ. A K(ATP) channel opener inhibited myocardial reperfusion action potential shortening and arrhythmias. Eur J Pharmacol 2001;419:73–83.Google Scholar

  • 61.

    Hagendorff A, Schumacher B, Kirchhoff S, Luderitz B, Willecke K. Conduction disturbances and increased atrial vulnerability in Connexin40-deficient mice analyzed by transesophageal stimulation. Circulation 1999;99:1508–15.Google Scholar

  • 62.

    Sun B, Qi X, Jiang J. Heptanol decreases the incidence of ischemia-induced ventricular arrhythmias through altering electrophysiological properties and connexin 43 in rat hearts. Biomed Rep 2014;2:349–53.Google Scholar

  • 63.

    Shi S, Liu T, Wang D, Zhang Y, Liang J, Yang B, et al. Activation of N-methyl-d-aspartate receptors reduces heart rate variability and facilitates atrial fibrillation in rats. Europace 2016 [ahead of print: pii: euw086].Google Scholar

  • 64.

    Cyon E. Über den einfluss der temperaturänderungen auf zahl, dauer und stärke der herzschläge. Berichte über die verhandlungen der königlich sächsischen gesellschaft der wissenschaften zu Leipzig. Mathematisch-Physische Classe 1866;18:256–306.Google Scholar

  • 65.

    Langendorff O. Untersuchungen am überlebenden Säugetierherzen. Pflug Archiv 1898;61:291–332.Google Scholar

  • 66.

    Taegtmeyer H. One hundred years ago: Oscar Langendorff and the birth of cardiac metabolism. Can J Cardiol 1995;11:1030–35.Google Scholar

  • 67.

    Zimmer HG. The isolated perfused heart and its pioneers. News Physiol Sci 1998;13:203–10.Google Scholar

  • 68.

    Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R. Isolated heart perfusion according to Langendorff---still viable in the new millennium. J Pharmacol Toxicol Methods 2007;55:113–26.Google Scholar

  • 69.

    Wiggers CJ. The innervation of the coronary vessels. Am J Physiol 1909;24:391–405.Google Scholar

  • 70.

    Broadley KJ. The Langendorff heart preparation—reappraisal of its role as a research and teaching model for coronary vasoactive drugs. J Pharmacol Methods 1979;2:143–56.Google Scholar

  • 71.

    Katz G, Paine WG, Tiller PM. A new method for coronary perfusion of the mammalian heart. Arch Int Pharmacodyn 1939;61:109–12.Google Scholar

  • 72.

    Broadley KJ. An analysis of the coronary vascular responses to catecholamines, using a modified Langendorff heart preparation. Br J Pharmacol 1970;40:617–29.Google Scholar

  • 73.

    Choy L, Yeo JM, Tse V, Chan SP, Tse G. Cardiac disease and arrhythmogenesis: mechanistic insights from mouse models. Int J Cardiol Heart Vasc 2016;12:1–10.Google Scholar

  • 74.

    Tse G, Tse V, Yeo JM. Ventricular anti-arrhythmic effects of heptanol in hypokalaemic, Langendorff-perfused mouse hearts. Biomed Rep 2016;4:313–24.Google Scholar

  • 75.

    Tse G, Lai ET, Lee AP, Yan BP, Wong SH. Electrophysiological mechanisms of gastrointestinal arrhythmogenesis: lessons from the heart. Front Physiol 2016;7:230.Google Scholar

  • 76.

    Sutherland FJ, Shattock MJ, Baker KE, Hearse DJ. Mouse isolated perfused heart: characteristics and cautions. Clin Exp Pharmacol Physiol 2003;30:867–78.Google Scholar

  • 77.

    Liao R, Podesser BK, Lim CC. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol 2012;303:H156–67.Google Scholar

  • 78.

    Neely JR, Rovetto MJ, Whitmer JT, Morgan HE. Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 1973;225:651–8.Google Scholar

  • 79.

    Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 1967;212:804–14.Google Scholar

  • 80.

    Bateman MG, Iaizzo PA. Comparative imaging of cardiac structures and function for the optimization of transcatheter approaches for valvular and structural heart disease. Int J Cardiovasc Imaging 2011;27:1223–34.Google Scholar

  • 81.

    Chinchoy E, Soule CL, Houlton AJ, Gallagher WJ, Hjelle MA, Laske TG, et al. Isolated four-chamber working swine heart model. Ann Thorac Surg 2000;70:1607–14.Google Scholar

  • 82.

    Martin HN, Applegrath EC. On the temperature limits of the vitality of the mammalian heart. Stud Biol Lab Johns Hopkins Univ 1890;4:275.Google Scholar

  • 83.

    Manuck HP, Hockman CH. Central nervous system mechanisms mediating cardiac rate and rhythm. Am Heart J 1967;74:96–109.Google Scholar

  • 84.

    Gellhorn E. The significance of the state of the central autonomic nervous system for quantitative and qualitative aspects of some cardiovascular reactions. Am Heart J 1963;67:106–20.Google Scholar

  • 85.

    Mason DT. The autonomic nervous system and regulation of cardiovascular performance. Anesthesiology 1968;29:670–80.Google Scholar

  • 86.

    Wolf S. Neural mechanisms in sudden cardiac death. Trans Am Clin Climatol Assoc 1968;79:158–76.Google Scholar

  • 87.

    Coumel P. Cardiac arrhythmias and the autonomic nervous system. J Cardiovasc Electrophysiol 1993;4:338–55.Google Scholar

  • 88.

    Sutherland FJ, Hearse DJ. The isolated blood and perfusion fluid perfused heart. Pharmacol Res 2000;41:613–27.Google Scholar

  • 89.

    Mantravadi R, Gabris B, Liu T, Choi BR, de Groat WC, Ng GA, et al. Autonomic nerve stimulation reverses ventricular repolarization sequence in rabbit hearts. Circ Res 2007;100:e72–80.Google Scholar

  • 90.

    Ng GA, Brack KE, Coote JH. Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart--a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp Physiol 2001;86:319–29.Google Scholar

  • 91.

    Brack KE, Coote JH, Ng GA. Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart. Exp Physiol 2004;89:128–39.Google Scholar

  • 92.

    Brack KE, Coote JH, Ng GA. The effect of direct autonomic nerve stimulation on left ventricular force in the isolated innervated Langendorff perfused rabbit heart. Auton Neurosci 2006;124:69–80.Google Scholar

  • 93.

    Brack KE, Coote JH, Ng GA. Vagus nerve stimulation inhibits the increase in Ca2+ transient and left ventricular force caused by sympathetic nerve stimulation but has no direct effects alone--epicardial Ca2+ fluorescence studies using fura-2 AM in the isolated innervated beating rabbit heart. Exp Physiol 2010;95:80–92.Google Scholar

  • 94.

    Ng GA, Brack KE, Patel VH, Coote JH. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res 2007;73:750–60.Google Scholar

  • 95.

    Brack KE, Patel VH, Coote JH, Ng GA. Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J Physiol 2007;583:695–704.Google Scholar

  • 96.

    Ng GA, Mantravadi R, Walker WH, Ortin WG, Choi BR, de Groat W, et al. Sympathetic nerve stimulation produces spatial heterogeneities of action potential restitution. Heart Rhythm 2009;6:696–706.Google Scholar

  • 97.

    Winter J, Brack KE, Coote JH, Ng GA. Cardiac contractility modulation increases action potential duration dispersion and decreases ventricular fibrillation threshold via beta1-adrenoceptor activation in the crystalloid perfused normal rabbit heart. Int J Cardiol 2014;172:144–54.Google Scholar

  • 98.

    Ng GA. Vagal modulation of cardiac ventricular arrhythmia. Exp Physiol 2014;99:295–9.Google Scholar

  • 99.

    Valentin JP, Hoffmann P, De Clerck F, Hammond TG, Hondeghem L. Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J Pharmacol Toxicol Methods 2004;49:171–81.Google Scholar

  • 100.

    Tse G, Yeo JM, Tse V, Sun B. Gap junction inhibition by heptanol increases ventricular arrhythmogenicity by decreasing conduction velocity without affecting repolarization properties or myocardial refractoriness in Langendorff-perfused mouse hearts. Mol Med Rep 2016;14:4069–4074.Google Scholar

  • 101.

    Tse G, Lai ET, Chan YW, Yeo JM, Yan BP. What is the arrhythmic substrate in viral myocarditis? Insights from clinical and animal studies. Front Physiol 2016;7:308.Google Scholar

  • 102.

    Tse G, Lai ET, Yeo JM, Yan BP. Electrophysiological mechanisms of Bayés syndrome: insights from clinical and mouse studies. Front Physiol 2016;7:188.Google Scholar

  • 103.

    Tse G, Lai ET, Tse V, Yeo JM. Molecular and electrophysiological mechanisms underlying cardiac arrhythmogenesis in diabetes mellitus. J Diabetes Res 2016:2848759.Google Scholar

  • 104.

    Pye MP, Cobbe SM. Arrhythmogenesis in experimental models of heart failure: the role of increased load. Cardiovasc Res 1996;32:248–57.Google Scholar

  • 105.

    Nicolson WB, McCann GP, Brown PD, Sandilands AJ, Stafford PJ, Schlindwein FS, et al. A novel surface electrocardiogram-based marker of ventricular arrhythmia risk in patients with ischemic cardiomyopathy. J Am Heart Assoc 2012;1:e001552.Google Scholar

  • 106.

    Nicolson WB, McCann GP, Smith MI, Sandilands AJ, Stafford PJ, Schlindwein FS, et al. Prospective evaluation of two novel ECG-based restitution biomarkers for prediction of sudden cardiac death risk in ischaemic cardiomyopathy. Heart 2014;100:1878–85.Google Scholar

  • 107.

    Tse G. Both transmural dispersion of repolarization and transmural dispersion of refractoriness are poor predictors of arrhythmogenicity: a role for the index of Cardiac Electrophysiological Balance (QT/QRS)? J Geriatr Cardiol 2016;13:813–4.Google Scholar

  • 108.

    Tse G. (Tpeak-Tend)/QRS and (Tpeak-Tend)/(QT x QRS): novel markers for predicting arrhythmic risk in the Brugada syndrome. Europace 2016; pii: euw194.Google Scholar

  • 109.

    Tse G, Yan BP. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Europace 2016; pii: euw280.Google Scholar

  • 110.

    Tse G. Novel conduction-repolarization indices for the stratification of arrhythmic risk. J Geriatr Cardiol 2016;13:811–812.Google Scholar

  • 111.

    Curtis MJ, Hancox JC, Farkas A, Wainwright CL, Stables CL, Saint DA, et al. The Lambeth Conventions (II): Guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 2013;139:213–48.Google Scholar

  • 112.

    Krebs HA, Henseleit K. Untersuchungen ueber die Harnstoffbildung im Tierkoerper. Hoppe-Seyler's Z Physiol Chem 1932;210:33–6.Google Scholar

  • 113.

    Reichelt ME, Willems L, Hack BA, Peart JN, Headrick JP. Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp Physiol 2009;94:54–70.Google Scholar

  • 114.

    Bing RJ, Siegel A, Ungar I, Gilbert M. Studies on fat, ketone and amino acid metabolism. Am J Med 1954;16:504–15.Google Scholar

  • 115.

    Belke DD, Larsen TS, Lopaschuk GD, Severson DL. Glucose and fatty acid metabolism in the isolated working mouse heart. Am J Physiol 1999;277:R1210–7.Google Scholar

  • 116.

    Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011;50:940–50.Google Scholar

  • 117.

    Bing RJ. Some aspects of biochemistry of myocardial infarction. Cell Mol Life Sci 2001;58:351–5.Google Scholar

  • 118.

    Qiu Y, Hearse DJ. Comparison of ischemic vulnerability and responsiveness to cardioplegic protection in crystalloid-perfused versus blood-perfused hearts. J Thorac Cardiovasc Surg 1992;103:960–8.Google Scholar

  • 119.

    Armitage WJ, Pegg DE. An evaluation of colloidal solutions for normothermic perfusion of rabbit hearts: an improved perfusate containing Haemaccel. Cryobiology 1977;14:428–34.Google Scholar

  • 120.

    Zausig YA, Chappell D, Becker BF, Potschka D, Busse H, Nixdorf K, et al. The impact of crystalloidal and colloidal infusion preparations on coronary vascular integrity, interstitial oedema and cardiac performance in isolated hearts. Crit Care 2013;17:R203.Google Scholar

  • 121.

    White CW, Hasanally D, Mundt P, Li Y, Xiang B, Klein J, et al. A whole blood-based perfusate provides superior preservation of myocardial function during ex vivo heart perfusion. J Heart Lung Transplant 2015;34:113–21.Google Scholar

  • 122.

    Pasini E, Solfrini R, Bachetti T, Marino M, Bernocchi P, Visioli F, et al. The blood perfused isolated heart: characterization of the model. Basic Res Cardiol 1999;94:215–22.Google Scholar

About the article

Corresponding author: Dr. Gary Tse, MBBS MA PhD FRSPH FIBMS FESC, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, Hong Kong, SAR, P.R. China, Phone: +852 39177548, Fax: +852 2817 0857

Received: 2016-07-18

Accepted: 2016-10-12

Published Online: 2017-01-07

Published in Print: 2017-05-01

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Croucher Foundation of Hong Kong, Clinical Assistant Professorship.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 28, Issue 3, Pages 191–200, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2016-0110.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lijun Cheng, Xinghua Wang, Tong Liu, Gary Tse, Huaying Fu, and Guangping Li
Frontiers in Physiology, 2018, Volume 9
Laura Iop, Eleonora Dal Sasso, Roberta Menabò, Fabio Di Lisa, and Gino Gerosa
Stem Cells International, 2017, Volume 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in