Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Haim, Abraham / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu

6 Issues per year

CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

See all formats and pricing
More options …
Volume 29, Issue 3


Calcium sensitization mechanisms in detrusor smooth muscles

Irfan Anjum
  • Corresponding author
  • Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-08 | DOI: https://doi.org/10.1515/jbcpp-2017-0071


The contraction of detrusor smooth muscles depends on the increase in intracellular calcium. The influx of calcium from the plasma membrane calcium channels and calcium release from the sarcoplasmic reticulum give rise to intracellular calcium. Under the pathophysiological conditions, the increased sensitivity of regulatory and contractile proteins to calcium also plays an important role in maintaining the spontaneous detrusor smooth muscle activity. Many proteins have been identified to play a role in calcium sensitization. Both the protein kinase C (PKC) and Rho-kinase (ROCK) signaling pathways are responsible for the induction of calcium sensitization in the detrusor smooth muscles. The balance between the myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) regulates the intracellular calcium-contractile force relationship. The inhibition of MLCP by PKC-mediated phosphatase inhibitor (CPI-17) and myosin phosphatase target subunit (MYPT-1) phosphorylation by both the PKC and ROCK are responsible for calcium sensitization in the detrusor smooth muscles. However, the ROCK pathway predominantly participates in the calcium sensitization induction under pathophysiological situations. Many kinases are well known nowadays to play a role in calcium sensitization. This review aims to enlighten the current understanding of the regulatory mechanisms of calcium sensitization with special reference to the PKC and ROCK pathways in the detrusor smooth muscles. It will also aid in the development of new pharmacological strategies to prevent and treat bladder diseases.

Keywords: calcium sensitization; detrusor smooth muscle; myosin light chain phosphatase


  • 1.

    Hashitani H, Brading AF, Suzuki H. Correlation between spontaneous electrical, calcium and mechanical activity in detrusor smooth muscle of the guinea-pig bladder. Br J Pharmacol 2004;141:183–93.CrossrefPubMedGoogle Scholar

  • 2.

    Hashitani H, Brading AF. Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder. Br J Pharmacol 2003;140:159–69.PubMedCrossrefGoogle Scholar

  • 3.

    Ozaki H, Gerthoffer WT, Publicover NG, Fusetanit N, Sanders KM. Time-dependent changes in Ca2+ sensitivity during phasic contraction of canine antral smooth muscle. J Physiol 1991;440: 207–24.PubMedCrossrefGoogle Scholar

  • 4.

    Chacko S, Conti MA, Adelstein RS. Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sci USA 1977;74:129–33.CrossrefGoogle Scholar

  • 5.

    Somlyo AP, Himpens B. Cell calcium in smooth muscle. FASEB J 1989;3:2266–76.CrossrefPubMedGoogle Scholar

  • 6.

    Somlyo AP, Somlyo AP. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003;83:1325–58.PubMedCrossrefGoogle Scholar

  • 7.

    Hartshorne DJ, Ito M, Erdödi F. Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J Biol Chem 2004;279:37211–4.CrossrefPubMedGoogle Scholar

  • 8.

    Yagi S, Becker PL, Fay FS. Relationship between force and Ca2+ concentration in smooth muscle as revealed by measurements on single cells. Proc Natl Acad Sci USA 1988;85:4109–13.CrossrefGoogle Scholar

  • 9.

    Shirazi A, KunihikoK L, Patrick F, Claudio M, Andrew PS, Avril VS, et al. Purification and characterization of the mammalian myosin light chain phosphatase holoenzyme: the differential effects of the holoenzyme and its subunits on smooth muscle. J Biol Chem 1994;269:31598–606.PubMedGoogle Scholar

  • 10.

    Hirano K, Derkach DN, Hirano M, Nishimura J, Kanaide H. Protein kinase network in the regulation of phosphorylation and dephosphorylation of smooth muscle myosin light chain. Mol Cell Biochem 2003;248:105–14.PubMedCrossrefGoogle Scholar

  • 11.

    Feng J, Ito M, Ichikawa K, Isaka N, Nishikawa M, Hartshorne DJ, et al. Inhibitory phosphorylation site for Rho associated kinase on smooth muscle myosin phosphatase. J Biol Chem 1999;274:37385–90.CrossrefPubMedGoogle Scholar

  • 12.

    Kitazawa T, Eto M, Woodsome TP, Khalequzzaman M. Phosphorylation of the myosin phosphatase targeting subunit and CPI-17 during Ca2+ sensitization in rabbit smooth muscle. J Physiol 2003;546:879–89.PubMedCrossrefGoogle Scholar

  • 13.

    Somlyo AP, Somlyo AV. From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta Physiol Scand 1998;164:437–48.CrossrefPubMedGoogle Scholar

  • 14.

    Ito M, Nakano T, Erdodi F, Hartshorne DJ. Myosin phosphatase: structure, regulation and function. Mol Cell Biochem 2004;259:197–209.CrossrefPubMedGoogle Scholar

  • 15.

    Bollen M, Stalmans W. The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol 1992;27:227–81.CrossrefPubMedGoogle Scholar

  • 16.

    Cohen PT. Protein phosphatase 1–targeted in many directions. J Cell Sci 2002;115:241–56.PubMedGoogle Scholar

  • 17.

    Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004;84:1–39.PubMedCrossrefGoogle Scholar

  • 18.

    Boudrez A, Kristien E, Monique B, Etienne W, Willy S, Mathieu B, et al. Identification of MYPT1 and NIPP1 as subunits of protein phosphatase 1 in rat liver cytosol. FEBS Lett 1999;455:175–8.CrossrefPubMedGoogle Scholar

  • 19.

    Dirksen WP, Vladic F, Fisher SA. A myosin phosphatase targeting subunit isoform transition defines a smooth muscle developmental phenotypic switch. Am J Physiol Cell Physiol 2000;278:589–600.CrossrefGoogle Scholar

  • 20.

    Alessi D, Macdougall LK, Sola MM, Ikebe M, Cohen P. The control of protein phosphatase-1 by targetting subunits; The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem 1992;210:1023–35.CrossrefPubMedGoogle Scholar

  • 21.

    Johnson D, Cohen PT, Chen M, Chen YH. Identification of the regions on the M110 subunit of protein phosphatase 1M that interact with the M21 subunit and with myosin. Eur J Biochem 1997;244:931–9.CrossrefPubMedGoogle Scholar

  • 22.

    Shimizu H, Ito M, Miyahara M, Ichikawa K, Okubo S, Konishi T, et al. Characterization of the myosin-binding subunit of smooth muscle myosin phosphatase. J Biol Chem 1994;269:30407–11.PubMedGoogle Scholar

  • 23.

    Ogut O, Brozovich FV. Regulation of force in vascular smooth muscle. J Mol Cell Cardiol 2003;35:347–55.PubMedCrossrefGoogle Scholar

  • 24.

    Ito M, Feng J, Tsujino S, Inagaki N, Inagaki M, Tanaka J, et al. Interaction of smooth muscle myosin phosphatase with phospholipids. Biochemistry 1997;36:7607–14.PubMedCrossrefGoogle Scholar

  • 25.

    Arimura T, Suematsu N, Zhou YB, Nishimura J, Satoh S, Takeshita A, et al. Identification, characterization, and functional analysis of heart-specific myosin light chain phosphatase small subunit. J Biol Chem 2001;276:6073–82.PubMedCrossrefGoogle Scholar

  • 26.

    Hartshorne DJ, Ito M, Erdödi F. Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil 1998;19:325–41.PubMedCrossrefGoogle Scholar

  • 27.

    Mabuchi K, Bang JG, Knut L, Masaaki I, Takeshi N,Terence T, et al. Isoforms of the small non-catalytic subunit of smooth muscle myosin light chain phosphatase. Biochim Biophys Acta – Protein Struct Mol Enzymol 1999;1434:296–303.CrossrefGoogle Scholar

  • 28.

    Shin HM, Hyun DJ, Gallant C, Tao TC, Hartshorne DJ, Ito M, et al. Differential association and localization of myosin phosphatase subunits during agonist-induced signal transduction in smooth muscle. Circ Res 2002;90:546–53.PubMedCrossrefGoogle Scholar

  • 29.

    Hirano K, Phan BC, Hartshorne DJ. Interactions of the subunits of smooth muscle myosin phosphatase. J Biol Chem 1997;272:3683–8.CrossrefPubMedGoogle Scholar

  • 30.

    Ichikawa K, Hirano K, Ito M, Tanaka J, Nakano T, Hartshorne DJ, et al. Interactions and properties of smooth muscle myosin phosphatase. Biochemistry 1996;35:6313–20.PubMedCrossrefGoogle Scholar

  • 31.

    Johnson DF, Moorhead G, Caudwell FB, Cohen P, Chen YH, Chen MX, et al. Identification of protein-phosphatase-1-binding domains on the glycogen and myofibrillar targetting subunits. Eur J Biochem 1996;239:317–25.CrossrefPubMedGoogle Scholar

  • 32.

    Zhou Y, Hirano K, Sakihara C, Nishimura J, Kanaide H. NH2-terminal fragments of the 130 kDa subunit of myosin phosphatase increase the Ca2+ sensitivity of porcine renal artery. J Physiol 1999;516:55–65.CrossrefPubMedGoogle Scholar

  • 33.

    Grassie ME, Moffat LD, Walsh MP, Mac Donald JA. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1. Arch Biochem Biophys 2011:510:147–59.CrossrefGoogle Scholar

  • 34.

    Muranyi A, Zhang R, Liu F, Hirano K, Ito M, Epstein HF, Hartshorne DJ. Myotonic dystrophy protein kinase phosphorylates the myosin phosphatase targeting subunit and inhibits myosin phosphatase activity. FEBS 2001;493:80–4.CrossrefGoogle Scholar

  • 35.

    Noma K, Oyama N, Liao JK. Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol 2006;290: 661–8.CrossrefGoogle Scholar

  • 36.

    Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M, et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999;147:1023–38.PubMedCrossrefGoogle Scholar

  • 37.

    Hagerty L, Weitzel DH, Chambers J, Fortner CN, Brush MH, Loiselle D, et al. ROCK1 phosphorylates and activates zipper-interacting protein kinase. J Biol Chem 2007;282:4884–93.PubMedCrossrefGoogle Scholar

  • 38.

    Khasnis M, Nakatomi A, Gumpper K, Eto M. Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry 2014;53:2701–9.PubMedCrossrefGoogle Scholar

  • 39.

    Mac Donald JA, Eto M, Borman MA, Brautigan DL, Haystead TA. Dual Ser and Thr phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by MYPT-associated kinase. FEBS Lett 2001;493:91–4.PubMedCrossrefGoogle Scholar

  • 40.

    Niiro N, Ikebe M. Zipper-interacting protein kinase induces Ca2+-free smooth muscle contraction via myosin light chain phosphorylation. J Biol Chem 2001;276:29567–74.CrossrefGoogle Scholar

  • 41.

    Murata-Hori M, Suizu F, Iwasaki T, Kikuchi A, Hosoya H. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett 1999;451:81–4.CrossrefPubMedGoogle Scholar

  • 42.

    Broustas CG, Grammatikakis N, Eto M, Dent P, Brautigan DL, Kasid U, et al. Phosphorylation of the myosin-binding subunit of myosin phosphatase by Raf-1 and inhibition of phosphatase activity. J Biol Chem 2002;277:3053–9.CrossrefPubMedGoogle Scholar

  • 43.

    Murányi A, Zhang R, Liu F, Hirano K, Ito M, Epstein HF, et al. Myotonic dystrophy protein kinase phosphorylates the myosin phosphatase targeting subunit and inhibits myosin phosphatase activity. FEBS Lett 2001;493:80–4.CrossrefPubMedGoogle Scholar

  • 44.

    Pfitzer G, Sonntag-Bensch D, Brkic-Koric D. Thiophosphorylation-induced Ca2+ sensitization of guinea-pig ileum contractility is not mediated by Rho-associated kinase. J Physiol 2001;533:651–64.CrossrefGoogle Scholar

  • 45.

    Eto M, Karginov A, Brautigan DL. A novel phosphoprotein inhibitor of protein type-1 phosphatase holoenzymes. Biochemistry 1999;38:16952–7.CrossrefPubMedGoogle Scholar

  • 46.

    Eto M, Senba S, Morita F, Yazawa M. Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: its specific localization in smooth muscle. FEBS Lett 1997;410:356–60.CrossrefPubMedGoogle Scholar

  • 47.

    Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, et al. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 2000;475:197–200.CrossrefPubMedGoogle Scholar

  • 48.

    Kitazawa T, Polzin A N, Eto M. CPI-17-deficient smooth muscle of chicken. J Physiol 2004;557:515–28.PubMedCrossrefGoogle Scholar

  • 49.

    Seko T, Ito M, Kureishi Y, Okamoto R, Moriki N, Onishi K, et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res 2003;92:411–8.CrossrefPubMedGoogle Scholar

  • 50.

    Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997;389:990–4.CrossrefPubMedGoogle Scholar

  • 51.

    Shimizu K, Kaneda T, Chihara H, Kaburagi T, Nakajyo S, Urakawa N, et al. Effects of phenylephrine on the contractile tension and cytosolic Ca2+ level in rat anococcygeus muscle. J Smooth Muscle Res 1995;31:163–73.CrossrefPubMedGoogle Scholar

  • 52.

    Woodsome TP, Eto M, Everett A, Brautigan DL, Kitazawa T. Expression of CPI-17 and myosin phosphatase correlates with Ca2+ sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol 2001;535:553–64.CrossrefGoogle Scholar

  • 53.

    Stanton MC, Austin JC, Delaney DP, Gosfield A, Marx JO, Zderic SA, et al. Partial bladder outlet obstruction selectively abolishes protein kinase C induced contraction of rabbit detrusor smooth muscle. J Urol 2006;176:2716–21.PubMedCrossrefGoogle Scholar

  • 54.

    Chang S, Hypolite JA, Mohanan S, Zderic S, Wein AJ, Chacko S, et al. Alteration of the PKC-mediated signaling pathway for smooth muscle contraction in obstruction-induced hypertrophy of the urinary bladder. Lab Invest 2009;89:823–32.CrossrefPubMedGoogle Scholar

  • 55.

    Leiria LO, Sollon C, Calixto MC, Lintomen L, Mónica FZ, Anhê GF, et al. Role of PKC and CaV1.2 in detrusor overactivity in a model of obesity associated with insulin resistance in mice. PLoS One 2012;7:e48507.CrossrefGoogle Scholar

  • 56.

    Hypolite JA, Lei Q, Chang S, Zderic SA, Butler S, Wein AJ, et al. Spontaneous and evoked contractions are regulated by PKC-mediated signaling in detrusor smooth muscle: involvement of BK channels. Am J Physiol Renal Physiol 2013;304:F451–62.PubMedCrossrefGoogle Scholar

  • 57.

    Bing W, Chang S, Hypolite JA, DiSanto ME, Zderic SA, Rolf L, et al. Obstruction-induced changes in urinary bladder smooth muscle contractility: a role for Rho kinase. Am J Physiol Renal Physiol 2003;285:F990–7.CrossrefPubMedGoogle Scholar

  • 58.

    Wibberley A, Chen Z, Hu E, Hieble JP, Westfall TD. Expression and functional role of Rho-kinase in rat urinary bladder smooth muscle. Br J Pharmacol 2003;138:757–66.CrossrefPubMedGoogle Scholar

  • 59.

    Schneider T, Fetscher C, Krege S, Michel M. Signal transduction underlying carbachol-induced contraction of human urinary bladder. J Pharmacol 2004;309:1148–53.Google Scholar

  • 60.

    Lin AD, Levin RM, Kogan BA, Whitbeck C, Leggett RE, Kearns C, et al. Alteration of contractile and regulatory proteins in estrogen-induced hypertrophy of female rabbit bladder. Urology 2006;68:1139–43.PubMedCrossrefGoogle Scholar

  • 61.

    Chang S, Hypolite J, DiSanto ME, Changolkar A, Wein AJ, Chacko S, et al. Increased basal phosphorylation of detrusor smooth muscle myosin in alloxan-induced diabetic rabbit is mediated by upregulation of Rho-kinase beta and CPI-17. Am J Physiol Renal Physiol 2006;290:F650–6.PubMedCrossrefGoogle Scholar

  • 62.

    Guven A, Lin WY, Neuman P, Kogan BA, Levin R, Mannikarottu A, et al. Effect of age on the role of rho-kinase in short-term partial bladder outlet obstruction. Urology 2008;71:541–5.CrossrefPubMedGoogle Scholar

  • 63.

    Teixeira CE, Jin L, Priviero FB, Ying Z, Webb RC. Comparative pharmacological analysis of Rho-kinase inhibitors and identification of molecular components of Ca2+ sensitization in the rat lower urinary tract. Biochem Pharmacol 2007;74:647–58.CrossrefPubMedGoogle Scholar

  • 64.

    Ismael HN, Mustafa S, Thulesius O. Effect of diabetes on cooling-induced detrusor muscle contraction: mediation via rho-kinase activation. Urology 2010;75:891–5.PubMedCrossrefGoogle Scholar

  • 65.

    Siegel S, Noblett K, Mangel J, Giebling T, Sutherland SE, Bird ET, et al. Results of a prospective, randomized, multicenter study evaluating sacral neuromodulation with Interstim therapy compared to standard medical therapy at 6 monts in subjects with mild symptoms of overactive bladder. Neurourol Urodyn 2015;34:224–30.CrossrefGoogle Scholar

  • 66.

    Boberg L, Poljakovic M, Rahman A, Eccles R, Arner A. Role of Rho-kinase and protein kinase C during contraction of hypertrophic detrusor in mice with partial urinary bladder outlet obstruction. BJU Int 2012;109:132–40.CrossrefPubMedGoogle Scholar

  • 67.

    Shahab N, Kajioka S, Takahashi R, Hayashi M, Nakayama S, Sakamoto K, et al. Novel effect of 2-aminoethoxydiphenylborate through inhibition of calcium sensitization induced by Rho kinase activation in human detrusor smooth muscle. Eur J Pharmacol 2013;708:14–20.PubMedCrossrefGoogle Scholar

  • 68.

    Kirschstein T, Protzel C, Porath K, Sellmann T, Köhling R, Hakenberg OW, et al. Age-dependent contribution of Rho kinase in carbachol-induced contraction of human detrusor smooth muscle in vitro. Acta Pharmacol Sin 2014;35:74–81.CrossrefPubMedGoogle Scholar

  • 69.

    Boopathi E, Gomes C, Zderic S A, Malkowicz B, Chakrabarti R, Patel DP, et al. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy. AJP Cell Physiol 2014;307:542–53.CrossrefGoogle Scholar

  • 70.

    Marx JO, Basha ME, Mohanan S, Hypolite JA, Chang S, Wein AJ, et al. Effects of Rho-kinase inhibition on myosin light chain phosphorylation and obstruction-induced detrusor overactivity. Int J Urol 2014;21:319–24.CrossrefPubMedGoogle Scholar

  • 71.

    Kirschstein T, Sahre T, Kernig K, Protzel C, Porath K, Köhling R, et al. Inverse relationship of Rho kinase and myosin-light chain kinase expression in the aging human detrusor smooth muscle. BMC Urol 2015;15:104.PubMedCrossrefGoogle Scholar

  • 72.

    Hayashi M, Kajioka S, Itsumi M, Takahashi R, Shahab N, Ishigami T, et al. Actions of cAMP on calcium sensitization in human detrusor smooth muscle contraction. BJU Int 2016;117:179–91.CrossrefPubMedGoogle Scholar

  • 73.

    Takahashi R, Nishimura J, Hirano K, Seki N, Naito S, Kanaide H, et al. Ca2+ sensitization in contraction of human bladder smooth muscle. J Urol 2004;172:748–52.CrossrefPubMedGoogle Scholar

  • 74.

    Durlu-Kandilci N, Brading AF. Involvement of Rho kinase and protein kinase C in carbachol-induced calcium sensitization in beta-escin skinned rat and guinea-pig bladders. Br J Pharmacol 2006;148:376–84.PubMedGoogle Scholar

  • 75.

    Juan YS, Li S, Levin RM, Kogan BA, Schuler C, Leggett RE, et al. The effect of ischemia/reperfusion on rabbit bladder-role of rho-kinase and smooth muscle regulatory proteins. Urology 2009;73:1126–30.CrossrefPubMedGoogle Scholar

  • 76.

    Nobe K, Yamazaki T, Tsumita N, Hashimoto T, Honda K. Glucose-dependent enhancement of diabetic bladder contraction is associated with a rho kinase-regulated protein kinase C pathway. J Pharmacol Exp Ther 2009;328: 940–50.CrossrefPubMedGoogle Scholar

  • 77.

    Shahab N, Kajioka S, Seki N, Naito S. Functional role of muscarinic receptor subtypes in calcium sensitization and their contribution to rho-kinase and protein kinase C pathways in contraction of human detrusor smooth muscle. Urology 2012;79:7–13.Google Scholar

  • 78.

    Burmeister D, AbouShwareb T, D’Agostino JR, Andersson KE, Christ GJ. Impact of partial urethral obstruction on bladder function: time-dependent changes and functional correlates of altered expression of Ca(2)(+) signaling regulators. Am J Physiol Ren Physiol 2012;302:1517–28.CrossrefGoogle Scholar

  • 79.

    Hypolite JA, Chang S, Wein AJ, Chacko S, Malykhina AP. Protein kinase C modulates frequency of micturition and non-voiding contractions in the urinary bladder via neuronal and myogenic mechanisms. BMC Urol 2015;15:34.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Irfan Anjum, Research Assistant, Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye, Ankara, Turkey, Phone: +90 312 3052131, +90-5545988354

Received: 2017-05-09

Accepted: 2017-10-12

Published Online: 2018-01-08

Published in Print: 2018-06-27

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, Volume 29, Issue 3, Pages 227–235, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2017-0071.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in