Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Basic and Clinical Physiology and Pharmacology

Editor-in-Chief: Horowitz, Michal

Editorial Board: Das, Kusal K. / Epstein, Yoram / S. Gershon MD, Elliot / Haim, Abraham / Kodesh , Einat / Kohen, Ron / Lichtstein, David / Maloyan, Alina / Mechoulam, Raphael / Roth, Joachim / Schneider, Suzanne / Shohami, Esther / Sohmer, Haim / Yoshikawa, Toshikazu


CiteScore 2016: 1.01

SCImago Journal Rank (SJR) 2016: 0.349
Source Normalized Impact per Paper (SNIP) 2016: 0.495

Online
ISSN
2191-0286
See all formats and pricing
More options …
Ahead of print

Issues

Antidiabetic and antihyperlipidemic potential of ethanol extract of Salacia lehmbachii stem bark in alloxan-induced diabetic rats

Godwin C. Akuodor
  • Corresponding author
  • Department of Pharmacology and Therapeutics, Faculty of Medicine, Ebonyi State University, P. M. B. 53 Abakaliki, Nigeria, Phone: +2348036725237, E-mail:
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Linus K. Eban
  • Department of Pharmacology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gloria Ahunna Ajoku
  • Department of Medicinal Chemistry and Quality Control, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ndubuisi N. Nwobodo
  • Department of Pharmacology and Therapeutics, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joseph L. Akpan
  • Department of Pharmacology and Therapeutics, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Basil C. Ezeokpo
  • Department of Internal Medicine, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kenneth I. Nwadike
  • Department of Pharmacology, Faculty of Medicine, University of Nigeria Enugu Campus, Enugu, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel OJ Aja
  • Department of Pharmacology and Therapeutics, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-23 | DOI: https://doi.org/10.1515/jbcpp-2018-0059

Abstract

Background

Salacial lehmbachii stem bark is used traditionally for the treatment of diabetes mellitus and its associated complications. Treatment of diabetes is necessary to reduce these complications.

Methods

In this study, the antidiabetic and antihyperlipidemic potential of S. lehmbachii ethanol stem bark extract was evaluated in alloxan-induced diabetic rats at a dose of 100 mg/kg, 200 mg/kg, and 400 mg/kg p.o. daily for 21 days. Blood glucose levels, serum total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein (VLDL) were assessed in the animals.

Results

Treatment of alloxan-induced diabetic rats with S. lehmbachii stem bark extract showed significant (p<0.01) reduction in blood glucose levels when compared with diabetic control. The elevated levels of serum cholesterol, triglycerides, LDL, and VLDL were significantly (p<0.01) reduced by S. lehmbachii stem bark extract, while the level of HDL significantly (p<0.01) increased.

Conclusions

The results obtained suggest that S. lehmbachii stem bark extract has the potential to treat diabetes condition and hyperlipidemic disorders.

Keywords: alloxan; antidiabetic; antihyperlipidemic; rats; Salacia lehmbachii; stem bark extract

References

  • 1.

    Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010;87:4–14.CrossrefWeb of SciencePubMedGoogle Scholar

  • 2.

    Burke JP, Williams K, Narayan KM, Lelbson C, Haffner SM, Stern MP. A population perspective on diabetes prevention: whom should we target for preventing weight gain? Diabetes Care 2003;26:1999–2004.CrossrefPubMedGoogle Scholar

  • 3.

    Kameswara RB, Renuka SP, Rajasekhar MD, Nagaraju N, Appa Rao CH. Hypoglycemic activity of Terminalia pallida fruit in alloxan induced diabetic rats. J Ethnopharmacology 2003;85:169–72.CrossrefGoogle Scholar

  • 4.

    Bhattaram VA, Graefe U, Kohlert C, Veit M, Derendorf H. Pharmacokinetics and bioavailability of herbal medicinal products. Phytomed 2002;9:1–36.CrossrefGoogle Scholar

  • 5.

    Bailey CJ, Day C. Traditional treatments for diabetes. Diabetes Care 1989;12:553–64.PubMedCrossrefGoogle Scholar

  • 6.

    Mitra SK, Gopumadhavan S, Muralidhar TS, Danturlikar SD, Sujatha MB. Effect of a herbomineral preparation D-400 in streptozotocin induced diabetic rats. J Ethnopharmacol 1996;54:41–6.PubMedCrossrefGoogle Scholar

  • 7.

    Annapurna A, Mahalakshmi DK, Krishna KM. Antidiabetic activity of a polyherbal preparation (tincture of punchparna) in normal and diabetic rats. Indian J Exp Biol 2001;39:500–2.PubMedGoogle Scholar

  • 8.

    Bhattacharya SK, Satyan KS, Chakrbarti A. Effect of Trasina, an Ayurvedic herbal formulation, on pancreatic islet superoxide dismutase activity in hyperglycaemic rats. Indian J Exp Biol 1997;35:297–9.PubMedGoogle Scholar

  • 9.

    Pari L, Saravanan R. Antidiabetic effect of diasulin, an herbal drug, on blood glucose, plasma insulin and hepatic enzymes of glucose metabolism in hyperglycaemic rats. Diabetes Obesity Metab 2004;6:286–92.CrossrefGoogle Scholar

  • 10.

    Kumar S, Kumar DR. Evaluation of antidiabetic activity of Euphorbia hirta Linn. In streptozotocin induced induced diabeticmice. Indian J Nat Prod Resour 2010;1:200–3.Google Scholar

  • 11.

    Jia W, Gao WY, Xiao PG. Antidaibetic drugs of plant origin used in China: composition, pharmacology and hypoglycemic mechanisms. Zhongguo Zhong Yao Za Zhi 2003;28:108–13.Google Scholar

  • 12.

    Elder C. Ayurveda for diabetes mellitus: a review of the biomedical literature. Altern Ther Health Med 2004;10:44–50.PubMedGoogle Scholar

  • 13.

    Corstiaen PC, Sosef SM. Revision of African genus Annickia. Syst Geogr Plants 2007;77:146–52.Google Scholar

  • 14.

    Essien AD, Akuodor GC, Essien EA, Asika EC, Chilaka KC, Nwadum SK, Evaluation of antipyretic potential of the ethanolic leaf extract of Salacia lehmbachii Loes. Asian J Med Sci 2015;7:22–5.CrossrefGoogle Scholar

  • 15.

    Essien AD, Essiet GA, Akuodor GC, Aja DO, Thomas EE. Studies on gastrointestinal properties of ethanolic leaf extract of Salacia lehmbachii in Wistar rats. Afr J Pharm Pharmacol 2016;10:451–7.CrossrefGoogle Scholar

  • 16.

    Takem LP, Lawal BA, Udia PM. Analgesic and acute anti-inflammatory activities of ethanolic root extract of Salacia lehmbachii. Br J Pharm Res 2014;4:2172–81.CrossrefGoogle Scholar

  • 17.

    Essien AD, Takem LP, Anele EI. In vitro cholinergic and acute toxicity evaluations of Salacia lehmbachii. Int J Pharm Pharmacol Res 2015;5:200–7.Google Scholar

  • 18.

    Essiet GA, Essien AD, Udoh FV, Essiet A. Antifertility effects of ethanol extract of Salacia lehmbachii root bark in Albino rats. J Adv Med Pharm Sci 2016;8:1–8.CrossrefGoogle Scholar

  • 19.

    Sofowora A. Medicinal plants and traditional medicine in Africa. 2nd ed. Ibadan: Spectrum Books Limited, 1993:134–156.Google Scholar

  • 20.

    Njoku VO, Obi C. Phytochemical constituents of some selected medicinal plants. Afr J Pure Appl Chem 2009;3:228–33.Google Scholar

  • 21.

    Borokini TI, Omotayo FO. 2Phytochemical and ethnobotanical study of some selected medicinal plants from Nigeria. J Med Plants Res 2012;6:1106–18.Google Scholar

  • 22.

    Sengul M, Yildiz H, Gungor N, Cetin B, Eser Z, Ercisli S. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan J Pharm Sci 2009;22:102–6.Google Scholar

  • 23.

    National Institute of Health, Guide for the Care and the Use of Laboratory Animals. Bethesda: National Institute of Health, 1985:85–123.Google Scholar

  • 24.

    OECD, Guidelines for the Testing of Chemicals; Acute Oral Toxicity – Acute Toxicity Class Method, Paris: OECD, 2001. Health Effects Test No.423.Google Scholar

  • 25.

    Liu Z, Li J, Zeng Z, Liu M, Wang M. The antidiabetic effects of cysteinyl metformin, a newly synthesized agent, in alloxan- and streptozocin- induced diabetic rats. Chem Biol Interact 2008;173:68–75.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 26.

    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499–502.PubMedGoogle Scholar

  • 27.

    Kumar S, Kumar V, Prakash OM. Antidiabetic and anti-lipemic effects of Cassia siamea leaves extract in streptozotocin induced diabetic rats. Asian Pac J Trop Med 2011;3:871–3.Web of ScienceGoogle Scholar

  • 28.

    Pari L, Latha M. Effect of Cassia auriculata flowers on blood sugar levels, serum and tissue lipids in streptpzotocin diabetic rats. Singapore Med J 2002;43:617–21.PubMedGoogle Scholar

  • 29.

    Lee MK, Kim MJ, Cho SY, Park SA, Park KK, Jung UJ et al. Hypoglycemic effect of Du-zhong (Eucommia ulmoids Oliv.) leaves in streptozotocin-induced diabetic rats. Diabet Res Clin Pract 2005;67:22–8.CrossrefGoogle Scholar

  • 30.

    Khan BA, Abraham A, Leelamma S. Hypoglycemic action of Murraya koengii (curry leaf) and Brussia juncea (mustard): mechanism of action. Indian J Biochem Biophys 1995;32: 106–8.Google Scholar

  • 31.

    Rajkumar L, Srinivasan N, Balasubramanian K, Govindarajulu P. Increased degradation ofdermal collagenin diabetic rats. Int J Exp Biol 1991;29:1081–3.Google Scholar

  • 32.

    Chatterjea MN, Shinde R. Diabetes mellitus. In: Text book of medical biochemistry. New Delhi: Jaypee Brothers Medical Publishers, 2002:317.Google Scholar

  • 33.

    Mironova MA, Klein RL, Virella GT, Lopes-Virella MF. Anti-modified LDL antibodies, LDL-containing immune complexes, and susceptibility of LDL to in vitro oxidation in patients with type 2 diabetes. Diabetes 2000;49:1033–49.PubMedCrossrefGoogle Scholar

  • 34.

    Bishop ML, Fody EP, Schoeff L. E. Clinical chemistry: Principles, procedures, correlations, 6th ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins, 2010.Google Scholar

  • 35.

    Pandhare RB, Sangameswaran B, Mohite PB, Khanag SG. Antihyperglycaemic and lipid lowering potential of Adenanthera pavonina Linn. in streptozotocin induced diabetic rats. Oriental Pharm Exp Med 2012;12:197–203.CrossrefGoogle Scholar

  • 36.

    Gupta RK, Kesari AN, Watal G, Murthy PS, Chandra R, Maithal K, et al. Hypoglycemic and antidiabetic effect of aqueous extract of leaves of Annona squamosal. Curr Sci 2005;88:1244–54.Google Scholar

  • 37.

    Krishnakumar K, Augustti KT, Vijayammal PL. Hypolipedemic effect of Solacia oblanga wall. Root bark in Streptozotocin diabetic rats. Med Sci 2000;28:65–7.Google Scholar

  • 38.

    Narayana KR, Reddy MS, Chaluvadi MR, Krishna DR. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential Indian. J Pharmacol 2001;33:2–16.Google Scholar

  • 39.

    Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 2002;10:178–82.Google Scholar

  • 40.

    Bhadoriya SS, Ganeshpurkar A, Bhadoriya RP, Sahu SK, Patel JR. Antidiabetic potential of polyphenolic-rich fraction of Tamarindus indica seed coat in alloxan-induced diabetic rats. J Basic Clin Physiol Pharmacol 2018;29:37–45.PubMedCrossrefGoogle Scholar

  • 41.

    Tandon S. Phytochemicals and cardiovascular health. High Current R and D 2005;28:18–22.Google Scholar

About the article

Received: 2018-05-05

Accepted: 2018-08-30

Published Online: 2018-10-23


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Basic and Clinical Physiology and Pharmacology, 20180059, ISSN (Online) 2191-0286, ISSN (Print) 0792-6855, DOI: https://doi.org/10.1515/jbcpp-2018-0059.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in