Jump to ContentJump to Main Navigation
Show Summary Details
More options …

The Journal of Critical Care Medicine

4 Issues per year

Open Access
See all formats and pricing
More options …

The Diagnosis and Hemodynamic Monitoring of Circulatory Shock: Current and Future Trends

Adham Hendy
  • Corresponding author
  • Ph.D Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
  • 1st Department of Cardiovascular Anesthesia and Intensive Care, “C.C.Iliescu” Emergency Institute for Cardiovascular Diseases, Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Şerban-Ion Bubenek-Turconi
  • Ph.D Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
  • 1st Department of Cardiovascular Anesthesia and Intensive Care, “C.C.Iliescu” Emergency Institute for Cardiovascular Diseases, Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-10 | DOI: https://doi.org/10.1515/jccm-2016-0018


Circulatory shock is a complex clinical syndrome encompassing a group of conditions that can arise from different etiologies and presented by several different hemodynamic patterns. If not corrected, cell dysfunction, irreversible multiple organ insufficiency, and death may occur. The four basic types of shock, hypovolemic, cardiogenic, obstructive and distributive, have features similar to that of hemodynamic shock. It is therefore essential, when monitoring hemodynamic shock, to making accurate clinical assessments which will guide and dictate appropriate management therapy. The European Society of Intensive Care has recently made recommendations for monitoring hemodynamic shock. The present paper discusses the issues raised in the new statements, including individualization of blood pressure targets, prediction of fluid responsiveness, and the use of echocardiography as the first means during the initial evaluation of circulatory shock. Also, the place of more invasive hemodynamic monitoring techniques and future trends in hemodynamic and metabolic monitoring in circulatory shock, will be debated.

Keywords: circulatory shock; hemodynamic shock; transesophageal echocardiography; new statements; future trends


  • 1. Antonelli M, Levy M, Andrews PJ, et al. Hemodynamic monitoring in shock and implications for management. Intensive Care Med. 2007;33:575-90.Google Scholar

  • 2. Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795-815.Google Scholar

  • 3. Vincent JL, Rhodes A, Perel A, et al. Clinical review: Update on hemodynamic monitoring - a consensus of 16. Crit Care. 2011;15:229.CrossrefGoogle Scholar

  • 4. Vincent JL, Pelosi P, Pearse R, et al. Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12. Crit Care. 2015;19:224.CrossrefGoogle Scholar

  • 5. Herget-Rosenthal S, Saner F, Chawla L S. Approach to hemodynamic shock and vasopressors. J Am SocNephrol. 2008;3:546-53.Google Scholar

  • 6. Bone RC, Balk RA, Cerra FB, et al. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864-74.CrossrefGoogle Scholar

  • 7. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801-10.Google Scholar

  • 8. Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:775-87.Google Scholar

  • 9. Finfer S, Vincent JL, De Backer D. Circulatory Shock. N Engl J Med. 2013;369:1726-34.Google Scholar

  • 10. Vincent JL, Sakr Y, Sprung CL, et al. Sepsis Occurrence in Acutely Ill Patients I. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344-53.CrossrefGoogle Scholar

  • 11. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122:2080-6.CrossrefGoogle Scholar

  • 12. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546-54.Google Scholar

  • 13. Jawad I, Lukšić I, Rafnsson SB. Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality. J Glob Health. 2012;2:010404.Google Scholar

  • 14. Goldberg RJ, Spencer FA, Gore JM, Lessard D, Yarzebski J. Thirty- Year Trends (1975 to 2005) in the Magnitude of, Management of, and Hospital Death Rates Associated With Cardiogenic Shock in Patients With Acute Myocardial Infarction A Population- Based Perspective. Circulation. 2009;119:1211-9.Google Scholar

  • 15. Awad HH, Anderson FA Jr, Gore JM, Goodman SG, Goldberg RJ. Cardiogenic shock complicating acute coronary syndromes: insights from the Global Registry of Acute Coronary Events. Am Heart J. 2012;163:963-71.CrossrefGoogle Scholar

  • 16. Kauvar DS, Wade CE. The epidemiology and modern management of traumatic hemorrhage: US and international perspectives. Crit Care. 2005;9:S1-9.CrossrefGoogle Scholar

  • 17. Zenati MS, Billiar TR, Townsend RN, Peitzman AB, Harbrecht BG. A brief episode of hypotension increases mortality in critically ill trauma patients. J Trauma. 2002;53:232-6.CrossrefGoogle Scholar

  • 18. Rivers EP, Kruse JA, Jacobsen G, et al. The influence of early hemodynamic optimization on biomarker patterns of severe sepsis and septic shock. Critical Care Medicine. 2007;35:2016-24.CrossrefGoogle Scholar

  • 19. Mikkelsen ME, Miltiades AN, Gaieski DF, et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med. 2009;37:1670-7.CrossrefGoogle Scholar

  • 20. Wacharasint P, Nakada TA, Boyd JH, Russell JA, Walley KR. Normal-range blood lactate concentration in septic shock is prognostic and predictive. Shock. 2012;38:4-10.CrossrefGoogle Scholar

  • 21. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368-77.CrossrefGoogle Scholar

  • 22. Rödig G, Prasser C, Keyl C, Liebold A, Hobbhahn J. Continuous cardiac output measurement: pulse contour analysis vsthermodilution technique in cardiac surgical patients. Br J Anaesth. 1999;82: 525-30.CrossrefGoogle Scholar

  • 23. Bendjelid K, Marx G, Kiefer N, et al. Performance of a new pulse contour method for continuous cardiac output monitoring: validation in critically ill patients. Br J Anaesth. 2013;aet116.Google Scholar

  • 24. Chung FT, Lin SM, Lin SY, Lin HC. Impact of extravascular lung water index on outcomes of severe sepsis patients in a medical intensive care unit. Respir Med. 2008;102:956-61.CrossrefGoogle Scholar

  • 25. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124:1900-8.CrossrefGoogle Scholar

  • 26. Spöhr F, Hettrich P, Bauer H, Haas U, Martin E, Böttiger BW. Comparison of two methods for enhanced continuous circulatory monitoring in patients with septic shock. Intensive care med. 2007;33:1805-10.Google Scholar

  • 27. Zhang Z, Xu X, Yao M, Chen H, Ni H, Fan H. Use of the PiCCO system in critically ill patients with septic shock and acute respiratory distress syndrome: a study protocol for a randomized controlled trial. Trials. 2013;14:1.CrossrefGoogle Scholar

  • 28. Mirea L, Ungureanu R, Pavelescu D, Grintescu I. Global enddiastolic volume: a better indicator of cardiac preload in patients with septic shock. Critical Care. 2015;19:P179.CrossrefGoogle Scholar

  • 29. Madhusudan P, Tirupakuzhi Vijayaraghavan BK, Cove ME. Fluid resuscitation in sepsis: reexamining the Paradigm. Biomed Res Int. 2014;2014:984082.Google Scholar

  • 30. KDIGO (2012) Clinical Practice Guideline for Acute Kidney Injury Section 2: AKI Definition. Kidney Int Suppl 2012;2:19-36.Google Scholar

  • 31. Cannesson M. Arterial pressure variation and goal-directed fluid therapy. J Cardiothorac Vasc Anesth. 2010;24:487-97.CrossrefGoogle Scholar

  • 32. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000-8.CrossrefGoogle Scholar

  • 33. Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. Philadelphia: WB Saunders Company. 1973, pp.135-47.Google Scholar

  • 34. Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med. 1998;26:1061-4.CrossrefGoogle Scholar

  • 35. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691-9.CrossrefGoogle Scholar

  • 36. Osman D, Ridel C, Ray P, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64-8.CrossrefGoogle Scholar

  • 37. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41:1774-81.CrossrefGoogle Scholar

  • 38. Perel A. Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsisinduced hypotension. Anesthesiology. 1998;89:1309-10.CrossrefGoogle Scholar

  • 39. Berkenstadt H, Margalit N, Hadan M, et al. Stroke Volume Variation as a Predictor of Fluid Responsiveness in Patients Undergoing Brain Surgery. Anesth Analg. 2001;92:984-9.CrossrefGoogle Scholar

  • 40. Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth. 2005;95:746-55.CrossrefGoogle Scholar

  • 41. Biais M, Ehrmann S, Mari A, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care. 2014;18:587.CrossrefGoogle Scholar

  • 42. Monnet X, Teboul JL. Passive leg rising. Intensive Care Med. 2008;34:659-63.Google Scholar

  • 43. Teboul JL, Monnet X. Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care. 2008;14:334-9.CrossrefGoogle Scholar

  • 44. Magder S, Georgiadis G, Cheong T. Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care. 1992;7:76-85.CrossrefGoogle Scholar

  • 45. Reeves ST, Finley AC, Skubas NJ, et al. Basic perioperative transesophageal echocardiography examination: a consensus statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26:443-56.CrossrefGoogle Scholar

  • 46. Perrino AC JR, Harris SN, Luther MA. Intraoperative determination of cardiac output using multiplanetransesophageal echocardiography: a comparison to thermodilution. Anesthesiology. 1998;89:350-7.CrossrefGoogle Scholar

  • 47. Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734-9.Google Scholar

  • 48. Charron C, Caille V, Jardin F, Vieillard-Baron A. Echocardiographic measurement of fluid responsiveness. Curr Opin Crit Care. 2006;12:249-54.CrossrefGoogle Scholar

  • 49. Cioccari L, Baur HR, Berger D, Wiegand J, Takala J, Merz TM. Hemodynamic assessment of critically ill patients using a miniaturized transesophageal echocardiography probe. Crit Care. 2013;17:R121.CrossrefGoogle Scholar

  • 50. Vieillard-Baron A, Slama M, Mayo P, et al. A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe. Intensive Care Med. 2013;39:629-35.Google Scholar

  • 51. Cavarocchi NC, Pitcher HT, Yang Q, et al. Weaning of extracorporeal membrane oxygenation using continuous hemodynamic transesophageal echocardiography. J Thorac Cardiovasc Surg. 2013;146:1474-9.CrossrefGoogle Scholar

  • 52. Maltais S, Costello WT, Billings FT, et al. Episodic monoplane transesophageal echocardiography impacts postoperative management of the cardiac surgery patient. J Cardiothorac Vasc Anesth. 2013;27:665-9.CrossrefGoogle Scholar

  • 53. Krishnan S, Ngai J, Schlame M, Rabinowitz L. 276: Comparison of Htee and Swan-Ganz Catheter for the Evaluation of Volume Status in Patients Status Post AVR. Crit Care Med. 2012;40:1-328.CrossrefGoogle Scholar

  • 54. Puskarich MA, Trzeciak S, Shapiro NI, et al. Whole blood lactate kinetics in patients undergoing quantitative resuscitation for severe sepsis and septic shock. Chest. 2013;143:1548-53.CrossrefGoogle Scholar

  • 55. Pölönen P, Ruokonen E, Hippeläinen M, Pöyhönen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90:1052-9.CrossrefGoogle Scholar

  • 56. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739-46.Google Scholar

  • 57. Sánchez M, García-de-Lorenzo A, Herrero E, et al. A protocol for resuscitation of severe burn patients guided by transpulmonarythermodilution and lactate levels: a 3-year prospective cohort study. Crit Care. 2013;17:R176.Google Scholar

About the article

Received: 2016-06-03

Accepted: 2016-07-15

Published Online: 2016-08-10

Published in Print: 2016-07-01

Citation Information: The Journal of Critical Care Medicine, ISSN (Online) 2393-1817, DOI: https://doi.org/10.1515/jccm-2016-0018.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in