1.

Baker SG, Lindeman KS. Rethinking historical controls. Biostatistics 2001;2:383–96. CrossrefGoogle Scholar

2.

Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983;70:41–55. CrossrefGoogle Scholar

3.

Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 1984;79:516–25. CrossrefGoogle Scholar

4.

Baker SG, Lindeman KS. The paired availability design: a proposal for evaluating epidural analgesia during labor. Stat Med 1994;13:2269–78. CrossrefGoogle Scholar

5.

Pearl J. Letter to the editor: remarks on the method of propensity scores. Stat Med 2009;28:1420–3. Google Scholar

6.

Shrier D. Letter to the editor. Stat Med 2008;27:2740–1.CrossrefGoogle Scholar

7.

Shrier D. Letter to the editor: propensity scores. Stat Med 2009;28:1317–8.CrossrefGoogle Scholar

8.

Sjolander A. Letter to the editor: propensity scores and m-structures. Stat Med 2009;28:1416–20. CrossrefGoogle Scholar

9.

Pearl J. Causality: models reasoning and inference. Cambridge: Cambridge University Press, 2009b. Google Scholar

10.

Pearl J. An introduction to causal inference. Int J Biostat 2010;6:7. Google Scholar

11.

Rubin DB. Author’s reply (to Ian Shrier’s Letter to the Editor). Stat Med 2008;27:2741–2. Google Scholar

12.

Rubin DB. Author’s reply: should observational studies be designed to allow lack of balance in covariate distributions across treatment groups? Stat Med 2009;28:1420–3. CrossrefGoogle Scholar

13.

Baker SG. Estimation and inference for the causal effect of receiving treatment on a multinomial outcome: an alternative approach. Biometrics 2011;67:319–25. CrossrefGoogle Scholar

14.

Frangakis CE, Rubin DB. Principle stratification in causal inference. Biometrics 2002;58:21–9. CrossrefGoogle Scholar

15.

VanderWeele TJ. Principal stratification – uses and limitations. Int J Biostat 2011;7:28. CrossrefGoogle Scholar

16.

Pearl J. Principal stratification – a goal or a tool? Int J Biost 2011;7:20. Google Scholar

17.

Rubin DB. Estimation from nonrandomized treatment comparisons using subclassification on propensity scores. In: Abel U, Koch A, editors. Nonrandomized comparative clinical studies. Dusseldorf: Symposion Publishing, 1998:85–100. Google Scholar

18.

Rubin DB. Propensity score methods. Am J Ophthalmol 2010;149:7–9. CrossrefGoogle Scholar

19.

Jeon JW, Chung HY, Bae JS. Chances of Simpson’s paradox. J Korean Stat Soc 1987;16:117–25. Google Scholar

20.

Baker SG, Kramer BS. Good for women, good for men, bad for people: Simpson’s paradox and the importance of sex-specific analysis in observational studies. J Women’s Health Gender-Based Med 2001;10:867–72. Google Scholar

21.

Wainer H. The BK-plot: making Simpson’s paradox clear to the masses. Chance 2002;15:60–2. Google Scholar

22.

Hullsiek KH, LouisTA. Propensity score modeling strategies for the causal analysis of observational data. Biometrics 2002;2:179–93. Google Scholar

23.

Lunceford JK, Davidan M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med 2004;23:2937–60. CrossrefGoogle Scholar

24.

D’Agostino RB Jr. Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 1998;17:2265–81. Google Scholar

25.

Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med 2007;26:734–53. CrossrefGoogle Scholar

26.

Breslow NE, Day NE. Statistical methods in cancer research, Vol. 1: the analysis of case-control studies. Lyon: The International Agency for Research on Cancer, 1980. Google Scholar

27.

Morgan SL, Winship C. Counterfactuals and causal inference: Methods and principles for social research. Cambridge: Cambridge University Press, 2007. Google Scholar

28.

Lieberman E, Lang J, Cohen A, D’Agostino R, Datta S, Frigoletto F. Association of epidural analgesia with cesarean delivery in nulliparas. Obstet Gynecol 1996;88:993–1000. CrossrefGoogle Scholar

29.

Impey L, Hobson J, O’Herlihy C. Graphic analysis of actively managed labor: prospective computation of labor progress in 500 consecutive nulliparous women in spontaneous labor at term. Am J Obstet Gynecol 2000;183:438–43. CrossrefGoogle Scholar

30.

Impey L, MacQuillian K, Robson M. Epidural analgesia need not increase operative delivery rates. Am J Obstet Gynecol 2000;182:358–63. CrossrefGoogle Scholar

31.

Beilin Y, Freidman F Jr, Andres LA, Hossain S, Bodian CA. The effect of obstetrician group and epidural analgesia on the risk for cesarean delivery in nulliparous women. Acta Anaesthesiol Scand 2000;44:959–64. CrossrefGoogle Scholar

32.

Frigoletto FD Jr, Lieberman E, Lang JM, Cohen A, Barss V, Ringer S,et al., A clinical trial of active management of labor. New Engl J Med 1995;333:745–50. CrossrefGoogle Scholar

33.

Nguyen UDT, Rothman KJ, Demissie S, Jackson DJ, Lang JM, Ecker JL. Epidural analgesia and risks of cesarean and operative vaginal deliveries in nulliparous and multiparous women. Matern Child Health J 2010;14:705–12. Google Scholar

34.

Brookhart MA, Schneeweis S, Rothman K. Glynn RJ, Avorn J, Sturmer T. Variable selection for propensity score models. Am J Epidemiol 2006;163:1149–56. CrossrefGoogle Scholar

35.

Pearl J. On a class of bias-amplifying covariates that endanger effect estimates. In: Grunwald P, Spirtes P, editors. Proceedings of the twenty-sixth conference on uncertainty in artificial intelligence. Corvallis, OR: AUAI, 2010:417–24. Google Scholar

36.

VanderWeele TJ, Shpitser I. A new criterion for confounder selection. Biometrics 2011;67:1406–13. CrossrefGoogle Scholar

37.

Baker SG. The paired availability design: an update. In: Abel U, Koch A, editors. Nonrandomized comparative clinical studies. Dusseldorf: Medinform-Verlag, 1998:79–84. Google Scholar

38.

Baker SG, Kramer BS, Lindeman KS. The paired availability design: if you can’t randomize, perhaps this applies. Chance 2006;19:57–60.Google Scholar

39.

Baker SG, Lindeman KS, Kramer BS. The paired availability design for historical controls. BMC Med Res Methodol 2001;1:9. Google Scholar

40.

Permutt T, Hebel R. Simultaneous-equation estimation in a clinical trial of the effect of smoking on birth weight. Biometrics 1989;45:619–22. CrossrefGoogle Scholar

41.

Imbens GW, Angrist JD. Identification and estimation of local average treatment effects. Econometrica 1994;62:467–75. CrossrefGoogle Scholar

42.

Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc 1996;92:444–55. CrossrefGoogle Scholar

43.

Cuzick J, Edwards R, Segnan N. Adjusting for non-compliance and contamination in randomized clinical trials. Stat Med 1997;16:1017–29. CrossrefGoogle Scholar

44.

Cox DR. Discussion. Stat Med 1998;17:387–9. Google Scholar

45.

Gardner M. Martin Gardner’s sixth book of mathematical games from Scientific American. San Francisco, CA: W.H. Freeman and Company, 1971:154. Google Scholar

46.

Maor E. Trigonometric delights. Princeton, NJ: Princeton University Press, 1998:122–3. Google Scholar

47.

Cheng J. Estimation and inference for the causal effect of receiving treatment on a multinomial outcome. Biometrics 2009;65:96–103. CrossrefGoogle Scholar

48.

DerSimonian R, Laird N. Meta-analysis in clinical trials. Cont Clin Trials 1986;7:177–88. CrossrefGoogle Scholar

49.

Follman DA, Proschan MA. Valid inference in random effects meta-analysis. Biometrics 1999;55:732–7. CrossrefGoogle Scholar

50.

Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med 2002;31:3153–9. CrossrefGoogle Scholar

51.

Akaike H. Likelihood of a model and information criteria. J Econometrics 1981;16:3–14. CrossrefGoogle Scholar

52.

Lieberman E. Epidemiology of epidural analgesia and cesarean delivery. Clin Obstet Gynecol 2004;47:317–31. CrossrefGoogle Scholar

53.

Chestnut DH, Mcgrath JM, Vincent RD, Penning DH, Choi WW, Bates JNet al., Does early administration of epidural analgesia affect obstetric outcome in nulliparous women who are in spontaneous labor? Anesthesiology 1994;80:1201–8. CrossrefGoogle Scholar

54.

Ohel G, Gonen R, Vaida S, Barak S, Gaitini L. Early versus late initiation of epidural analgesia in labor: does it increase the risk of cesarean section? A randomized trial. Am J Obstet Gynecol 2006;194:600–5.CrossrefGoogle Scholar

55.

Wong CA, Scavone BM, Peaceman AM, McCarthy RJ, Sullivan JT, Diaz NTet al., The risk of cesarean delivery with neuraxial analgesia given early versus late in labor. New Engl J Med 2005;352:655–65.CrossrefGoogle Scholar

56.

Wang F, Shen X, Guo X, Peng Y, Gu X, The Labor Examining Group. Epidural analgesia in the latent phase of labor and the risk of cesarean delivery. Anesthesiology 2009;111:871–80. CrossrefGoogle Scholar

57.

Gribble RK, Meier PR. Effect of epidural analgesia on the primary Cesarean rate. Obstet Gynecol 1991;78:231–4. Google Scholar

58.

Larsen DD. The effect of initiating an obstetric anesthesiology service on rate of Cesarean section and rate of forceps delivery. Abstract presented at the annual meeting of the Society of Obstetric Anesthesia and Perinatology, 1992. Google Scholar

59.

Mancuso JJ. Epidural analgesia in an army medical center: impact on Cesareans and instrumental deliveries. Abstract 13, presented at the annual meeting of the Society for Obstetric Anesthesiology and Perinatology, Palm Springs, 1993. Google Scholar

60.

Johnson S, Rosenfeld JA. The effect of epidural anesthesia on the length of labor. J Fam Pract 1995;40:244–7. Google Scholar

61.

Newman LM, Perez EC, Krolick TJ, Ivankovich AD. Labor analgesia, Cesarean anesthesia, and cesarean delivery rates for 18,000 deliveries from 1988 through 1994. Anesthesiology 1995;83:3A (Abstract A967). Google Scholar

62.

Lyon D, Knuckles G, Whitaker E, Salgado S. The effect of instituting an elective labor epidural program on the operative delivery rate. Obstet Gynecol 1997;90:135–41. CrossrefGoogle Scholar

63.

Fogel S, Shyken JM, Leighton BL, Mormol JS, Smeltzer J. Epidural labor analgesia and the incidence of cesarean delivery for dystocia. Anesth Analg 1998;87:119–23. Google Scholar

64.

Yancey MK, Pierce B, Schweitzer D, Daniels D. Observations on labor epidural analgesia and operative delivery rates. Am J Obstet Gynecol 1999;180:353–9. CrossrefGoogle Scholar

65.

Zhang J, Yancey MK, Klebanoff JS, Schweitzer D. Am J Obstet Gynecol 2001;185:128–34. Google Scholar

66.

Sharma SK, Sidawi JE, Ramin SM, Lucas MJ, Levno KJ, Cunningham G. Cesarean delivery: a randomized trial of epidural versus patient-controlled meperidine analgesia during labor. Anesthesiology 1997;87:487–94. CrossrefGoogle Scholar

67.

Gambling DR, Sharma SK, Ramin SM, Lucas MJ, Leveno KJ, WileyJet al., A randomized study of combined spinal-epidural analgesia versus intravenous meperidine during labor. Anesthesiology 1998;89:1336–44. CrossrefGoogle Scholar

68.

Sharma SK, McIntire DD, Wiley J, Leveno KJ. An individual patient meta-analysis of nulliparous women. Anesthesiology 2004;100:142–8. CrossrefGoogle Scholar

69.

Meier P. Statistics and medical experimentation. Biometrics 1975;31:511–52. CrossrefGoogle Scholar

70.

Imbens GW, Rubin DB. Bayesian inference for causal effects in randomized experiments. Ann Stat 1997;25:305–27. Google Scholar

71.

Philipsen T, Jensen N. Epidural block or parenteral pethidine as analgesia in labour; a randomized study concerning progress in labour and instrumental deliveries. Euro J Obstet Gynecol Reprod Biol 1989;30:27–33. CrossrefGoogle Scholar

72.

Thorp JA, Hu DH, Albin RM, Mcnitt J, Meyer BA, Cohen G, et al., The effect of intrapartum epidural analgesia on nulliparous labor: a randomized, controlled, prospective trial. Am J Obstet Gynecol 1993;169:851–8. CrossrefGoogle Scholar

73.

Muir HA, Shulkla R, Liston R, Writer D. Randomized trial of labor analgesia: a pilot study to compare patient-controlled intravenous analgesia with patient-controlled epidural analgesia to determine if analgesic method affects delivery outcome. Can J Anaesth 1996;43:A60 (Abstract). Google Scholar

74.

Ramin SM, Gambling DR, Lucas MJ, Sharma SK, Sidawi E, Leveno KJ. Randomized trial of epidural versus intravenous analgesia during labor. Obstet Gynecol 1995;86:783–9. CrossrefGoogle Scholar

75.

Bofill JA, Vincent RD, Ross EL, Martin RW, Norman PF, Werhan CF, et al., Nulliparous active labor, epidural analgesia, and cesarean delivery for dystocia. Am J Obstet Gynecol 1997;177:1462–70. Google Scholar

76.

Clark A, Carr D, Loyd G, Cook V, Spinnato J. The influence of epidural analgesia on cesarean delivery rates: a randomized, prospective clinical trial. Am J Obstet Gynecol 1998;179:1527–33. CrossrefGoogle Scholar

77.

Loughnan RA, Carli F, Romney M, Dore CJ, Gordon H. Randomized controlled comparison of epidural bupivicaine versus pethidine for analgesia in labor. Br J Anesth 2000;84:715–9. CrossrefGoogle Scholar

78.

Norris MC, Fogel ST, Conway-Long C. Combined spinal-epidural versus epidural labor analgesia. Anesthesiology 2001;95:913–20. CrossrefGoogle Scholar

79.

Howell CJ, Kidd C, Robers W, Upton P, Lucking L, Jones PW, et al., A randomized controlled trial of epidural compared with non-epidural analgesia in labour. Br J Obstet Gynecol 2001;108:27–33. Google Scholar

80.

Dickinson E, Paech MJ, McDonald SJ, Evans SF. The impact of intrapartum analgesia on labour and delivery outcomes in nulliparous women. Aust N Z J Obstet Gynecol 2002;42:65–72. Google Scholar

81.

Sharma SK, Alexancer JM, Messick G, Bloom S L, McIntire DD, Wiley J, et al., A randomized trial of epidural versus intravenous meperidine analgesia during labor in nulliparous women. Anesthesiology 2002;96:546–51. CrossrefGoogle Scholar

82.

Halpern SH, Muir H, Breen TW, Campbell DC, Barrett J, Liston R, et al., A multicenter randomized controlled trial comparing patient-controlled epidural with intravenous analgesia for pain relief in labor. Obstet Anesth 2004;99:1532–8. Google Scholar

83.

Frolich MA, Orth V, Knitza R, Finsterer U, Hepp H, Peter K. Does epidural analgesia reduce the incidence of operative delivery? Abstract presented at the annual meeting of the Society of Obstetric Anesthesiology and Perinatology in Hamilton, Bermuda, 1997.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.