The following R function calculates the average absolute correlation coefficient (*AACC*) among a continuous treatment and covariates after applying the inverse probability weights. The subsequent R codes demonstrate how to estimate the dose–response function using a real dataset.

F.aac.iter=function(i,data,ps.model,ps.num,rep,criterion) {

# i: number of iterations (trees)

# data: dataset containing the treatment and the covariates

# ps.model: the boosting model to estimate p(T_iX_i)

# ps.num: the estimated p(T_i)

# rep: number of replications in bootstrap

# criterion: the correlation metric used as the stopping criterion

GBM.fitted=predict(ps.model,newdata=data,n.trees=floor(i),

type= “response”)

ps.den=dnorm((data$T-GBM.fitted)/sd(data$T-GBM.fitted),0,1)

wt=ps.num/ps.den

aac_iter=rep(NA,rep)

for (i in 1:rep){

bo=sample(1:dim(data)[1],replace=TRUE,prob=wt)

newsample=data[bo,]

j.drop=match(c(“T”),names(data))

j.drop=j.drop[!is.na(j.drop)]

x=newsample[,-j.drop]

if(criterion== “spearman”| criterion== “kendall”){

ac=apply(x, MARGIN=2, FUN=cor, *y*=newsample$T,

method=criterion)

} else if (criterion== “distance”){

ac=apply(x, MARGIN=2, FUN=dcor, *y*=newsample$T)

} else if (criterion== “pearson”){

ac=matrix(NA,dim(x)[2],1)

for (j in 1:dim(x)[2]){

ac[j] =ifelse (!is.factor(x[,j]), cor(newsample$T, x[,j],

method=criterion),polyserial(newsample$T, x[,j]))

}

} else print(“The criterion is not correctly specified”)

aac_iter[i]=mean(abs(1/2*log((1+ac)/(1-ac))),na.rm=TRUE)

}

aac=mean(aac_iter)

return(aac)

}

# Create the data frame for the covariates

x=data.frame(BMIZ, factor(DIABETZ1), G1BDESTM, G1WTCON,

factor(INCOME1), M1AGE1, M1BMI, factor(M1CURLS), factor(M1CURMT),

M1DEPRS, M1ESTEEM, M1GFATCN, M1GNOW, factor(M1GSATN),

M1MFATCN, M1MNOW, factor(M1MSAT), factor(M1NOEX), M1OGIBOD,

M1PCEAFF, M1PCEEFF, M1PCEEXT, M1PCEIMP, M1PCEPER, M1PDSTOT,

M1RLOAD, factor(M1SMOKE), M1WGTTES, M1WTCON, M1YRED, factor(OBESE1),

g1discal, g1obcdc, g1ovrcdc, g1pFM, g1wgttes, m1cfqcwt, m1cfqenc,

m1cfqmon, m1cfqpwt, m1cfqrsp, m1cfqrst, m1cfqwtc, m1dis, m1hung,

m1lim, m1picky, m1rest, m1zsav, m1zsweet)

# Find the optimal number of trees using Pearson/polyserial correlation

library(gbm)

library(polycor)

mydata=data.frame(*T*=M2WTCON,X=x)

model.num=lm(T~1,data=mydata)

ps.num=dnorm((mydata$T-model.num$fitted)/(summary(model.num))$sigma,0,1)

model.den=gbm(T~.,data=mydata, shrinkage=0.0005,

interaction.depth=4, distribution= “gaussian”,n.trees=20000)

opt=optimize(F.aac.iter,interval=c(1,20000), data=mydata, ps.model=model.den,

ps.num=ps.num,rep=50,criterion= “pearson”)

best.aac.iter=opt$minimum

best.aac=opt$objective

# Calculate the inverse probability weights

model.den$fitted=predict(model.den,newdata=mydata,

n.trees=floor(best.aac.iter), type= “response”)

ps.den=dnorm((mydata$T-model.den$fitted)/sd(mydata$T-model.den$fitted),0,1)

weight.gbm=ps.num/ps.den

# Outcome analysis using survey package

library(survey)

dataset=data.frame(earlydiet,M2WTCON, weight.gbm)

design.b=svydesign(ids=~1, weights=~weight.gbm, data=dataset)

fit=svyglm(earlydiet~M2WTCON, family=quasibinomial(),design=design.b)

summary(fit)

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.