Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Causal Inference

Ed. by Imai, Kosuke / Pearl, Judea / Petersen, Maya Liv / Sekhon, Jasjeet / van der Laan, Mark J.

2 Issues per year

See all formats and pricing
More options …

Causal Inference via Algebraic Geometry: Feasibility Tests for Functional Causal Structures with Two Binary Observed Variables

Ciarán M. Lee / Robert W. Spekkens
Published Online: 2017-03-22 | DOI: https://doi.org/10.1515/jci-2016-0013


We provide a scheme for inferring causal relations from uncontrolled statistical data based on tools from computational algebraic geometry, in particular, the computation of Groebner bases. We focus on causal structures containing just two observed variables, each of which is binary. We consider the consequences of imposing different restrictions on the number and cardinality of latent variables and of assuming different functional dependences of the observed variables on the latent ones (in particular, the noise need not be additive). We provide an inductive scheme for classifying functional causal structures into distinct observational equivalence classes. For each observational equivalence class, we provide a procedure for deriving constraints on the joint distribution that are necessary and sufficient conditions for it to arise from a model in that class. We also demonstrate how this sort of approach provides a means of determining which causal parameters are identifiable and how to solve for these. Prospects for expanding the scope of our scheme, in particular to the problem of quantum causal inference, are also discussed.

Keywords: causal inference; algebraic geometry; discrete causal models


  • 1.

    Pearl J. Causality, 2nd ed. Cambridge : Cambridge University Press; 2009.Google Scholar

  • 2.

    Sprites P, Glymour C, Scheines R. Causation, prediction and search, 2nd ed. Cambridge: The MIT press; 2000.Google Scholar

  • 3.

    Janzing D, Mooij J, Peters J, Scholkopf B. Identifying counfounders using additive noise models. Proceedings of the 25th Conference on Uncertainty in Artificia Intelligence.2009.

  • 4.

    Hoyer P, Janzing D, Mooij J, Peters J, Scholkopf B. Nonlinear causal discovery with additive noise models. Advances in Neural Information Processing Systems 21. New York: Curran Associates, Inc.; 2009:689–696.Google Scholar

  • 5.

    Peters J, Janzing D, Scholkopf B. Causal inference on discrete data using additive noise models. IEEE TPAMI. 2011;33(12):2436–2450.CrossrefGoogle Scholar

  • 6.

    Peters J, Mooij JM, Janzing D, Scholkopf B. Causal discovery with continuous additive noise models. J Mach Learn Res. 2014;15:2009–2053.Google Scholar

  • 7.

    Cox D, Little J, O’Shea Ideals D. Varieties and algorithms: an introduction to computational algebraic geometry and commutative algebra. New York: Springer Verlag; 2007.Google Scholar

  • 8.

    Mishra B. Algorithmic algebra. New York: Springer Verlag; 2012.Google Scholar

  • 9.

    Bardet M. Algorithms Seminar. On the complexity of a Groebner basis algorithm; 2002–2004:2005.Google Scholar

  • 10.

    Bell JS. Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press; 1964.Google Scholar

  • 11.

    Clauser JF, Horne MA, Shimony A, Holt RA. Proposed experiment to test local hidden-variable theories. Phys Rev Lett. 1969;23:880.CrossrefGoogle Scholar

  • 12.

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S. Bell nonlocality. Rev Mod Phys. 2014;86:419.Web of ScienceCrossrefGoogle Scholar

  • 13.

    Wood CJ, Spekkens RW. The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-inequality violations require fine-tuning. New J Phys. 2015;17:033002.CrossrefGoogle Scholar

  • 14.

    Fritz T. Beyond Bell’s theorem: correlation scenarios. New J Phys. 2012;14:103001.Web of ScienceCrossrefGoogle Scholar

  • 15.

    Ver Steeg G, Galstyan A. A sequence of relaxations constraining hidden variable models. Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI.2011.Google Scholar

  • 16.

    Bonet B. Instrumentality tests revisited. Proceedings of the 17th Conference on Uncertainty in Artificia Intelligence.2001.

  • 17.

    Budroni C, Cabello A. Bell inequalities from variable elimination methods. J Phys A Math Theor. 2012;45:385304.CrossrefGoogle Scholar

  • 18.

    Fritz T, Chaves R. Entropic inequalities and marginal problems. IEEE Trans Inf Theory. 2013;59:803–817.CrossrefWeb of ScienceGoogle Scholar

  • 19.

    Fritz T. Beyond Bell’s Theorem II: scenarios with arbitrary causal structure. Commun Math Phys. 2016;341(2):391–434.CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Chaves R, Kuen R, Brask J, Gross D. A unifying framework for relaxations of the causal assumptions in Bell’s theorem. Phys Rev Lett. 2015;114:140403.CrossrefWeb of ScienceGoogle Scholar

  • 21.

    Chaves R, Majenz C, Gross D. Information-theoretic implications of quantum causal structures. Nat Commun. 2015;6:5766.Web of ScienceCrossrefGoogle Scholar

  • 22.

    Tavakoli A, Skrzypczyk P, Cavalcanti D, Acin A. Non-local correlations in the star-network configuration. Phys Rev A. 2014;90:062109.CrossrefGoogle Scholar

  • 23.

    Branciard C, Rosset D, Gisin N, Pironio S. Bilocal versus nonbilocal correlations in entanglement swapping. Phys Rev A. 2012;85:032129.Web of ScienceGoogle Scholar

  • 24.

    Leifer MS, Spekkens RW. Formulating quantum theory as a causally neutral theory of Bayesian inference. Phys Rev A. 2013;88:052130.CrossrefGoogle Scholar

  • 25.

    Hensen J, Lal R, Pusey MF. Theory-independent limits on correlations from generalised Bayesian networks. New J Phys. 2014;16:113043.CrossrefGoogle Scholar

  • 26.

    Pienaar J, Brukner C. A graph-separation theorem for quantum causal models. New J Phys. 2015;17:073020.Web of ScienceCrossrefGoogle Scholar

  • 27.

    Cirel’son BS. Quantum generalisations of Bell’s inequality. Lett Math Phys. 1980;4:2.Google Scholar

  • 28.

    Ried K, Agnew M, Vermeyden L, Janzing D, Spekkens RW, Resch K. A quantum advantage for inferring causal structure. Nat Phys. 2015;11:414.Web of ScienceCrossrefGoogle Scholar

  • 29.

    Geiger D, Meek C. Quantifier elimination for statistical problems. Proceedings of the 15th Conference on Uncertainty in artificial intelligence.1999.

  • 30.

    Geiger D, Meek C. Graphical models and exponential families. Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence.1998.

  • 31.

    Garcia LD, Stillman M, Sturmfels B. Algebraic geometry of Bayesian networks. J Symbolic Comput. 2005;39(34):331–355.CrossrefGoogle Scholar

  • 32.

    Garcia LD. Algebraic statistics in model selection. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence.2004.

  • 33.

    Kang C, Tian J. Polynomial constraints in causal Bayesian networks. Proceedings of the 23rd Conference on Uncertainty in Artificia Intelligence.2007.Google Scholar

  • 34.

    Tian J, Pearl J. On the testable implications of causal models with hidden variables. Proceedings of the 18th Conference on Uncertainty in Artificia Intelligence.2002.Google Scholar

  • 35.

    Kang C, Tian J. Inequality constraints in causal models with hidden variables. Proceedings of the 22nd Conference on Uncertainty in Artificia Intelligence.2006.

  • 36.

    Garcia-Puente LD, Spielvogel S, Sullivant S. Identifying causal effects with computer algebra. Proceedings of the 26th Conference on Uncertainty in Artificia Intelligence.2010.

  • 37.

    Chaves R. Polynomial Bell inequalities. Phys Rev Lett. 2016;116:010402.Web of ScienceCrossrefGoogle Scholar

  • 38.

    Rosset D, Branciard C, Barnea TJ, Ptz G, Brunner N, Gisin N. Nonlinear bell inequalities tailored for quantum networks. Phys Rev Lett. 2016;116(1):010403.Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2017-03-22

Citation Information: Journal of Causal Inference, Volume 5, Issue 2, 20160013, ISSN (Online) 2193-3685, DOI: https://doi.org/10.1515/jci-2016-0013.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ming-Xing Luo
Physical Review Letters, 2018, Volume 120, Number 14
Mirjam Weilenmann and Roger Colbeck
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2017, Volume 473, Number 2207, Page 20170483
Mirjam Weilenmann and Roger Colbeck
Quantum, 2018, Volume 2, Page 57
David Schmid and Robert W. Spekkens
Physical Review X, 2018, Volume 8, Number 1
Ciarán M. Lee and Matty J. Hoban
Physical Review Letters, 2018, Volume 120, Number 2
Anirudh Krishna, Robert W Spekkens, and Elie Wolfe
New Journal of Physics, 2017, Volume 19, Number 12, Page 123031
Robin Harper, Robert J. Chapman, Christopher Ferrie, Christopher Granade, Richard Kueng, Daniel Naoumenko, Steven T. Flammia, and Alberto Peruzzo
Physical Review A, 2017, Volume 95, Number 4

Comments (0)

Please log in or register to comment.
Log in