Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias

4 Issues per year


CiteScore 2016: 1.04

SCImago Journal Rank (SJR) 2015: 0.401
Source Normalized Impact per Paper (SNIP) 2015: 0.429

Online
ISSN
1553-3840
See all formats and pricing
More options …

First report of fingerprinting dried herbal products using a subtractive diversity array

Linhai Niu / Nitin Mantri / Hans Wohlmuth
  • Senior Research Fellow, Southern Cross Plant Science, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chunguang Li / Charlie C. Xue / Edwin Pang
Published Online: 2013-07-03 | DOI: https://doi.org/10.1515/jcim-2012-0002

Abstract

Introduction Sequence-independent microarrays have never been used to identify and authenticate dried herbal plants. Methods: We report successful fingerprinting of seven species: Leonurus sibiricus, Astragalus membranaceus, Coix lachryma-jobi, Magnolia biondii, Abutilon theophrasti, Physalis alkekengi, and Salvia miltiorrhiza from dried tissues using a sequence-independent microarray, “Subtracted Diversity Array”.

Results: Herbal plants could be identified from tissues as they were sold at the clinic. Hierarchical cluster of these species generated using SPSS v.15.0 confirmed to their predicted taxonomical relationships as specified in the Angiosperm Phylogeny Group II classification system. A polymorphism rate of 40.7% was achieved from the 376 spots used for fingerprinting. Functional characterization of polymorphic features by sequencing revealed 27.1% of those were retroelements or genes.

Conclusions: This technique provides a new way to produce markers for authenticating dried herbal samples.

Keywords: DNA microarray; dried herb; Chinese medicine; fingerprinting; subtracted diversity array

References

  • 1.

    Ralt D. Intercellular communication, NO and the biology of Chinese medicine. Cell Commun Signal 2005;3:8.PubMedCrossrefGoogle Scholar

  • 2.

    Yeh CC, Lin CC, Wang SD, Hung CM, Yeh MH, Liu CJ, et al. Protective and immunomodulatory effect of Gingyo-san in a murine model of acute lung inflammation. J Ethnopharmacol 2007;111:418–26.CrossrefGoogle Scholar

  • 3.

    An W, Yang J. Protective effects of Ping-Lv-Mixture (PLM), a medicinal formula on arrhythmias induced by myocardial ischemia-reperfusion. J Ethnopharmacol 2006;108:90–5.CrossrefPubMedGoogle Scholar

  • 4.

    Scheid V. The globalisation of Chinese medicine. Lancet 2000;354:10.Web of ScienceGoogle Scholar

  • 5.

    Patwardhan B, Warude D, Pushpangadan P, Bhatt N. Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med 2005;2:465–73.Google Scholar

  • 6.

    Zhu YP. Toxicity of the Chinese herb mu tong (Aristolochia manshuriensis). What history tells us. Adverse Drug React Toxicol Rev 2002;21:171–7.Google Scholar

  • 7.

    Zhang YB, Wang J, Wang ZT, But PP, Shaw PC. DNA microarray for identification of the herb of dendrobium species from Chinese medicinal formulations. Planta Med 2003;69:1172–4.PubMedGoogle Scholar

  • 8.

    Zhang YB, Shaw PC, Sze CW, Wang ZT, Tong Y. Molecular authentication of Chinese herbal materials. J Food Drug Anal 2007;15:1–9.Google Scholar

  • 9.

    Um JY, Chung HS, Kim MS, Na HJ, Kwon HJ, Kim JJ, et al. Molecular authentication of Panax ginseng species by RAPD analysis and PCR-RFLP. Biol Pharm Bull 2001;24:872–5.PubMedCrossrefGoogle Scholar

  • 10.

    Dangi RS, Lagu MD, Choudhary LB, Ranjekar PK, Gupta VS. Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol 2004;4:13.CrossrefPubMedGoogle Scholar

  • 11.

    Ha WY, Shaw PC, Liu J, Yau FC, Wang J. Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem 2002;50:1871–5.CrossrefGoogle Scholar

  • 12.

    Xu H, Wang Z, Ding X, Zhou K, Xu L. Differentiation of Dendrobium species used as “Huangcao Shihu” by rDNA ITS sequence analysis. Planta Med 2006;72:89–92.Google Scholar

  • 13.

    Li TX, Wang JK, Bai YF, Lu ZH. Diversity Suppression-Subtractive hybridization array for profiling genomic DNA polymorphisms. J Integr Plant Biol 2006;48:460–7.CrossrefGoogle Scholar

  • 14.

    Jaccoud D, Peng KM, Feinstein D, Kilian A. Diversity array: a solid state technology for sequence information independent genotyping. Nucleic Acid Res 2001;29:e25.Google Scholar

  • 15.

    Carles M, Cheung MK, Moganti S, Dong TT, Tsim KW, Ip NY et al. A DNA microarray for the authentication of toxic traditional Chinese medicinal plants. Planta Med 2005;71:580–4.CrossrefPubMedGoogle Scholar

  • 16.

    Sze SC, Zhang KY, Shaw PC, But PP, Ng TB, Tong YA. DNA microarray for differentiation of (Fengdou Shihu) by its 5S ribosomal DNA intergenic spacer region. Biotechnol Appl Biochem 2008;49:149–54.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 17.

    Li TX, Wang JK, Bai YF, Sun XD, Lu ZH. A novel method for screening species-specific gDNA probes for species identification. Nucleic Acids Res 2004;32:e45.PubMedCrossrefGoogle Scholar

  • 18.

    Lezar S, Myburg AA, Berger DK, Wingfield MJ. Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theor Appl Genet 2004;109:1329–36.PubMedCrossrefGoogle Scholar

  • 19.

    Jayasinghe R, Kong S, Coram TE, Kaganovitch J, Xue CC, Li CG, et al. Construction and validation of an innovative microarray for novel application of efficient and high-throughput genotyping of Angiosperms. Plant Biotechnol J 2007;5:282–9.Web of SciencePubMedCrossrefGoogle Scholar

  • 20.

    Jayasinghe R, Hai NL, Coram TE, Kong S, Kaganovitch J, Xue CC et al. Effectiveness of an innovative prototype subtracted diversity array (SDA) for fingerprinting plant species of medicinal importance. Planta Med 2009;75:1180–5.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 21.

    The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 2003;141:399–436.Google Scholar

  • 22.

    Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Klenhofs A. Diversity Array Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci 2004;101:9915–20.CrossrefGoogle Scholar

  • 23.

    Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, et al. Low level of genetic diversity in cultivated Pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 2006;113:585–95.Google Scholar

  • 24.

    Nouzová M, Neumann P, Navrátilová A, Galbraith DW, Macas J. Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol Biol 2001;45:229–244.PubMedCrossrefGoogle Scholar

  • 25.

    Heller-Uszynska K, Uszynski G, Huttner E, Evers M, Carlig J, Caig V, et al. Diversity arrays technology effectively reveals DNA polymorphism in a large and complex genome of sugarcane. Mol Breed 2010. DOI: 10.1007/s11032–010–9460-y.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Jayashree B, Punna R, Prasad P, Bantte K, Hash CT, Chandra S, et al. A database of simple sequence repeats from cereal and legume expressed sequence tags mined in silico: survey and evaluation. In Silico Biol 2006;6:607–20.Google Scholar

About the article

Received: 2010-12-18

Accepted: 2013-03-17

Published Online: 2013-07-03


Citation Information: Journal of Complementary and Integrative Medicine, Volume 10, Issue 1, Pages 17–27, ISSN (Online) 1553-3840, ISSN (Print) 2194-6329, DOI: https://doi.org/10.1515/jcim-2012-0002.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in