Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias


CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

Online
ISSN
1553-3840
See all formats and pricing
More options …

Effect of Persea americana (avocado) fruit extract on the level of expression of adiponectin and PPAR-γ in rats subjected to experimental hyperlipidemia and obesity

Monika Padmanabhan
  • Department of Biochemistry, Bharathi Women’s College – Affiliated to University of Madras, Chennai, Tamilnadu, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Geetha Arumugam
  • Corresponding author
  • Department of Biochemistry, Bharathi Women’s College, Broadway, Chennai, Tamilnadu 600108, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-24 | DOI: https://doi.org/10.1515/jcim-2013-0053

Abstract

Background: Persea americana, commonly known as avocado, is traditionally consumed fruit which possesses body fat lowering capacity. Adiponectin plays an important role in regulating obesity. In this study, the effect of hydro-alcoholic fruit extract of P. americana (HAEPA) on the level of blood lipids, glutathione, lipid peroxidation products, adiponectin and peroxisome proliferator activated receptor (PPAR)-γ expressions was investigated in rats fed a high-fat diet (HFD).

Methods: Male Sprague Dawley rats were divided into four groups: groups 1 and 2 were fed normal rat chow (5% fat) and groups 3 and 4 were fed HFD (23% fat) for a period of 14 weeks. In addition, groups 2 and 4 rats were administered orally with 100 mg/kg body weight of HAEPA from third week. After 14 weeks, rats were sacrificed, and serum/plasma levels of total cholesterol, phospholipids, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and adiponectin were determined. The mRNA expression of adiponectin, PPAR-γ and protein expression of PPAR-γ were also evaluated.

Results: The body mass index (BMI), total fat pad mass and adiposity index were significantly decreased in HAEPA co-administered rats than in HFD-fed rats. The levels of LDL and lipid peroxides were significantly higher in HFD group than in HFD+HAEPA group. Levels of reduced glutathione, adiponectin, mRNA expression of adiponectin, PPAR-γ and protein expression of PPAR-γ were found to be increased in HFD+HAEPA group than in HFD group. The hypolipidemic effect of HAEPA is also evidenced by the histological observations in liver, heart and adipose tissue.

Conclusions: The results indicate that HAEPA exhibits hypolipidemic activity probably by increasing the mRNA expression of adiponectin and PPAR-γ, which reduce the risk of hyperlipidemia and obesity.

Keywords: adiponectin; avocado; PPAR-γ; body mass index; high-fat diet; hyperlipidemia

References

  • 1.

    Barness LA, Opitz JM, Gilbert-Barness E. Obesity: genetic, molecular, and environmental aspects. Am J Med Genet A 2007;143:3016–34.CrossrefGoogle Scholar

  • 2.

    Grundy SM. Cholesterol and coronary heart disease: a new era. J Am Med Assoc 1986;256:2849–58.CrossrefGoogle Scholar

  • 3.

    Biggerstaff KD, Wooten JS. Understanding lipoproteins as transporters of cholesterol and other lipids. Adv Physiol Educ 2004;28:105–6.PubMedCrossrefGoogle Scholar

  • 4.

    Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000;11:327–32.PubMedCrossrefGoogle Scholar

  • 5.

    Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby AP. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci 2006;110:267–78.PubMedGoogle Scholar

  • 6.

    Motoshima H, Wu X, Sinha M, Hardy E, Rosato EL, Barbot DJ, et al. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab 2002;87:5662–7.CrossrefPubMedGoogle Scholar

  • 7.

    Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003;423:762–9.PubMedCrossrefGoogle Scholar

  • 8.

    Wei J, Bhattacharyya S, Jain M, Varga J. Regulation of matrix remodeling by peroxisome proliferator-activated receptor-γ: a novel link between metabolism and fibrogenesis. Open Rheumatol J 2012;6:103–15.PubMedCrossrefGoogle Scholar

  • 9.

    Hajer GR, Van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008;29:2959–71.PubMedCrossrefGoogle Scholar

  • 10.

    Spiegelman BM. PPAR-γ: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998;47:507–14.PubMedCrossrefGoogle Scholar

  • 11.

    Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000;405:421–4.PubMedGoogle Scholar

  • 12.

    Speight TM. Avery’s drug treatment principles and practice of clinical pharmacology and therapeutics, 3rd ed. Auckland: ADIS Press, 1987:599.Google Scholar

  • 13.

    Rainey C, Affleck M, Bretschger K, Alfin-Slater RB. The California avocado, a new look. Nutr Today 1994;29:23.CrossrefGoogle Scholar

  • 14.

    D’Ambrosio SM, Han C, Pan L, Kinghorn AD, Ding H. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway. Biochem Biophys Res Commun 2011;409:465–9.CrossrefPubMedGoogle Scholar

  • 15.

    Mahadeva Rao US, Adinew B. Remnant B-cell stimulative and anti-oxidative effects of Persea americana fruit extract studied in rats introduced into streptozotocin-induced hyperglycemic state. Afr J Tradit Complement Altern Med 2011;8:210–17.Google Scholar

  • 16.

    Ding H, Chin YW, Kinghorn AD, D’Ambrosio SM. Chemopreventive characteristics of avocado fruit. Semin Cancer Biol 2007;17:386–94.CrossrefPubMedGoogle Scholar

  • 17.

    Nascimento AF, Sugizaki MM, Leopoldo AS, Lima-Leopoldo AP, Luvizotto RA, Nogueira CR, et al. A hypercaloric pellet-diet cycle induces obesity and co-morbidities in wistar rats. Araq Bras Endocrinol Metab 2008;52:968–74.CrossrefGoogle Scholar

  • 18.

    Taylor BA, Phillips SJ. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics 1996;34:389–98.PubMedCrossrefGoogle Scholar

  • 19.

    William WN, Ceddia RB, Curi R. Leptin controls the fate of fatty acids in isolated rat white adipocytes. J Endocrinol 2002;175:735–44.CrossrefPubMedGoogle Scholar

  • 20.

    Folch J, Lees M, Sloane SG. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957;226:497–509.PubMedGoogle Scholar

  • 21.

    Zak B, Dickenman RC, White EG, Burnett U, Cherney PJ. Rapid estimation of free and total cholesterol. Am J Clin Pathol 1954;24:1307–15.PubMedGoogle Scholar

  • 22.

    Van Handel E, Zilversmit DB. Micromethod for the direct determination of serum triglycerides. J Lab Clin Med 1957;50:152–7.PubMedGoogle Scholar

  • 23.

    Miyazawa T. Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay. Free Radic Biol Med 1989;7:209–17.PubMedCrossrefGoogle Scholar

  • 24.

    Kuchmak M, Hazlehurst JS, Olansky AS, Taylor L. Reference sera with graded levels of high density lipoprotein cholesterol. Clin Chim Acta 1984;144:237–43.CrossrefPubMedGoogle Scholar

  • 25.

    Bairaktari ET, Seferiadis KI, Elisaf MS. Evaluation of methods for the measurement of low-density lipoprotein cholesterol. J Cardiovasc Pharmacol Ther 2005;10:45–54.PubMedCrossrefGoogle Scholar

  • 26.

    Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990;46:421–31.CrossrefGoogle Scholar

  • 27.

    Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochem Biophys Acta 1979;582:67–78.CrossrefGoogle Scholar

  • 28.

    Shrestha S, Ehlers SJ, Lee JY, Fernandez ML, Koo SI. Dietary green tea extract lowers plasma and hepatic triglycerides and decreases the expression of sterol regulatory element-binding protein-1c mRNA and its responsive genes in fructose-fed, ovariectomized rats. J Nutr 2009;139:640–5.CrossrefPubMedGoogle Scholar

  • 29.

    Nabel EG. Cardiovascular disease. N Engl J Med 2003;349:60–72.PubMedGoogle Scholar

  • 30.

    Spady DK, Woollett LA, Dietschy JM. Regulation of plasma LDL-cholesterol levels by dietary cholesterol and fatty acids. Annu Rev Nutr 1993;13:355–81.CrossrefPubMedGoogle Scholar

  • 31.

    Lu QY, Arteaga JR, Zhang Q, Huerta S, Go VL, Heber D. Inhibition of prostate cancer cell growth by an avocado extract: role of lipid-soluble bioactive substances. J Nutr Biochem 2005;16:23–30.CrossrefPubMedGoogle Scholar

  • 32.

    Kris-Etherton PM. AHA science advisory. Monounsaturated fatty acids and risk of cardiovascular disease. America Kris Etherton PM. AHA Science Advisory. Monounsaturated fatty acids and risk of cardiovascular disease. American Heart Association Nutrition Committee. Circulation 1999;100:1253-58. Heart Association Nutrition Committee. Circulation 1999;100:1253–8.Google Scholar

  • 33.

    Mohamed Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Dissord 1998;22:1145–58.CrossrefGoogle Scholar

  • 34.

    Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79–83.CrossrefPubMedGoogle Scholar

  • 35.

    Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, Ohishi M, Sugimoto K, et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 2004;43:1318–23.PubMedCrossrefGoogle Scholar

  • 36.

    Sharma PK, Bhansali A, Sialey R, Malhotra S, Pandhi P. Effects of pioglitazone and metformin on plasma adiponectin in newly detected type 2 diabetes mellitus. Clin Endocrinol 2006;65:722–8.CrossrefGoogle Scholar

  • 37.

    He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 2003;100:15712–17.CrossrefGoogle Scholar

  • 38.

    Berger J, Moller DE. The mechanism of action of PPARs. Annu Rev Med 2002;53:409–35.CrossrefGoogle Scholar

  • 39.

    Joss-Moore LA, Wang Y, Campbell MS, Moore B, Yu X, Callaway CW, et al. Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARγ2 expression in male rat offspring prior to the onset of obesity. Early Hum Dev 2010;86:179–85.PubMedCrossrefGoogle Scholar

  • 40.

    Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, et al. The organization, promoter analysis, and expression of the human PPAR-gamma gene. J Biol Chem 1997;272:18779–89.CrossrefGoogle Scholar

  • 41.

    Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998;391:79–82.CrossrefPubMedGoogle Scholar

  • 42.

    Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:241–52.PubMedCrossrefGoogle Scholar

  • 43.

    Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998;93:229–40.PubMedCrossrefGoogle Scholar

  • 44.

    Esposito LA, Melov S, Panov A, Cottrell BA, Cottrell WD. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 1999;96:4820–5.CrossrefGoogle Scholar

  • 45.

    Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 2003;52:1655–63.PubMedCrossrefGoogle Scholar

  • 46.

    Karuna R, Reddy SS, Baskar R, Saralakumari D. Antioxidant potential of aqueous extract of Phyllanthus amarus in rats. Indian J Pharmacol 2009;41:64–7.PubMedGoogle Scholar

  • 47.

    Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother 2003;57:145–55.PubMedCrossrefGoogle Scholar

  • 48.

    Carriere A, Carmona MC, Fernandez Y, Rigoulet M, Wenger RH, Penicaud L, et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation. J Biol Chem 2004;279:40462–9.PubMedCrossrefGoogle Scholar

  • 49.

    Mahadeva Rao US, Haque M. Insulin stimulative andanti-oxidative effects of Persea americana fruit extract on streptozotocin induced hyperglycemic rats. J Med Biol Sci 2011;4:1–10.Google Scholar

  • 50.

    Willis RB, Lim JS, Greenfield H. Composition of Australian foods 31. Tropical and sub-tropical fruit. Food Technol Aust 1986;38:118–23.Google Scholar

  • 51.

    Bergh B. Nutritious value of avocado. Riverside, CA: California Avocado Society Book, 1992:123–35.Google Scholar

  • 52.

    Deuster KC. Avocado is a rich source of beta-sitosterol. J Am Diet Assoc 2011;101:404–5.Google Scholar

  • 53.

    Kruger M, Sayed M, Langenhoven ML, Holling F. Composition of South African foods: vegetables and fruit. Supplement to the MRC food composition tables 1991, 1st ed. Tygerberg: Medical Research Council, 1998.Google Scholar

About the article

Received: 2013-10-15

Accepted: 2014-03-24

Published Online: 2014-04-24

Published in Print: 2014-06-01


Citation Information: Journal of Complementary and Integrative Medicine, Volume 11, Issue 2, Pages 107–119, ISSN (Online) 1553-3840, ISSN (Print) 2194-6329, DOI: https://doi.org/10.1515/jcim-2013-0053.

Export Citation

©2014 by Walter de Gruyter Berlin / Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Atsuyoshi Nishina, Masaya Itagaki, Daisuke Sato, Hirokazu Kimura, Yasuaki Hirai, Nyunt Phay, and Makoto Makishima
Molecules, 2017, Volume 22, Number 12, Page 2030
[2]
Vikas Gupta
World Journal of Gastroenterology, 2015, Volume 21, Number 37, Page 10621
[3]
Hourieh Tousian Shandiz, Bibi Marjan Razavi, and Hossein Hosseinzadeh
Phytotherapy Research, 2017, Volume 31, Number 8, Page 1173
[4]
Jamshid Tabeshpour, Bibi Marjan Razavi, and Hossein Hosseinzadeh
Phytotherapy Research, 2017, Volume 31, Number 6, Page 819
[5]
Silvia H. Hernández-López, Javier G. Rodríguez-Carpena, Clemente Lemus-Flores, Fernando Grageola-Nuñez, and Mario Estévez
Meat Science, 2016, Volume 116, Page 186

Comments (0)

Please log in or register to comment.
Log in