Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias

4 Issues per year


CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

Online
ISSN
1553-3840
See all formats and pricing
More options …

Phytonutrients as therapeutic agents

Charu Gupta
  • Corresponding author
  • Amity Institute for Herbal Research and Studies, Amity University, Noida, Uttar Pradesh, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dhan Prakash
  • Amity Institute for Herbal Research and Studies, Amity University, Noida, Uttar Pradesh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-22 | DOI: https://doi.org/10.1515/jcim-2013-0021

Abstract

Nutrients present in various foods plays an important role in maintaining the normal functions of the human body. The major nutrients present in foods include carbohydrates, proteins, lipids, vitamins, and minerals. Besides these, there are some bioactive food components known as “phytonutrients” that play an important role in human health. They have tremendous impact on the health care system and may provide medical health benefits including the prevention and/or treatment of disease and various physiological disorders. Phytonutrients play a positive role by maintaining and modulating immune function to prevent specific diseases. Being natural products, they hold a great promise in clinical therapy as they possess no side effects that are usually associated with chemotherapy or radiotherapy. They are also comparatively cheap and thus significantly reduce health care cost. Phytonutrients are the plant nutrients with specific biological activities that support human health. Some of the important bioactive phytonutrients include polyphenols, terpenoids, resveratrol, flavonoids, isoflavonoids, carotenoids, limonoids, glucosinolates, phytoestrogens, phytosterols, anthocyanins, ω-3 fatty acids, and probiotics. They play specific pharmacological effects in human health such as anti-microbial, anti-oxidants, anti-inflammatory, anti-allergic, anti-spasmodic, anti-cancer, anti-aging, hepatoprotective, hypolipidemic, neuroprotective, hypotensive, diabetes, osteoporosis, CNS stimulant, analgesic, protection from UVB-induced carcinogenesis, immuno-modulator, and carminative. This mini-review attempts to summarize the major important types of phytonutrients and their role in promoting human health and as therapeutic agents along with the current market trend and commercialization.

Keywords: anthocyanins; carotenoids; flavonoids; glucosinolates; nutraceuticals; phytoestrogens; phytonutrients; polyphenols; terpenoids

References

  • 1.

    Gupta C, Prakash D, Gupta S. Relationships between bioactive food components and their health benefits. In: Martirosyan DM, editor. Introduction to functional food science textbook, 1st ed. USA: Create Space Independent Publishing Platform, 2013:66–85.Google Scholar

  • 2.

    Bagchi D. Nutraceuticals and functional foods regulationsin the United States and around the world. Toxicol 2006;221:1–3.CrossrefGoogle Scholar

  • 3.

    Berger MM, Shenkin A. Vitamins and trace elements: practical aspects of supplementation. Nutrition 2006;22:952–5.CrossrefGoogle Scholar

  • 4.

    Ramaa CS, Shirode AR, Mundada AS, Kadam VJ.Nutraceuticals- an emerging era in the treatment andprevention of cardiovascular diseases. Curr Pharm Biotechnol 2006;7:15–23.Google Scholar

  • 5.

    Brower V. Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol 1998;16:728–31.Google Scholar

  • 6.

    Prakash D, Gupta KR. The antioxidant phytochemicals of nutraceutical importance. The Open Nutraceuticals J 2009;2:20–35.Google Scholar

  • 7.

    Prakash D, Gupta C. Role of phytoestrogens as nutraceuticals in human health. Pharmacol online 2011;1:510–23.Google Scholar

  • 8.

    Whitman M. Understanding the perceived need forcomplementary and alternative nutraceuticals: lifestyle issues. Clin J Oncol Nurs 2001;5:190–4.Google Scholar

  • 9.

    Zeisel SH. Regulation of nutraceuticals. Sci 1999;285:185–6.Google Scholar

  • 10.

    Gidley MJ. Naturally functional foods-challenges and opportunities. Asia Pac J Clin Nutr 2004;13:31.Google Scholar

  • 11.

    Cieslik E, Greda A, Adamus W. Contents of polyphenols in fruits and vegetables. Food Chem 2006;94:135–42.CrossrefGoogle Scholar

  • 12.

    Katalinic V, Milos M, Kulisic T, Jukic M. Screening of70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 2006;94:550–7.CrossrefGoogle Scholar

  • 13.

    Prakash D, Kumar N. Cost effective natural antioxidants. In: Watson RR, Gerald JK, Preedy VR, editors. Nutrients, dietary supplements and nutraceuticals. USA: Humana Press, Springer, 2011:163–88.Google Scholar

  • 14.

    Packer L, Weber SU. The role of vitamin E in theemerging field of nutraceuticals. New York: Marcel Dekker, 2001:27–43.Google Scholar

  • 15.

    Scalbert A, Manach C, Morand C, Remesy C. Dietarypolyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005;45:287–306.CrossrefGoogle Scholar

  • 16.

    Leiro J, Alvarez E, Arranz JA, Laguna R, Uriarte E, Orallo F. Effects of cis-resveratrol on inflammatory murine macrophages: antioxidant activity and down regulation ofinflammatory genes. J Leukoc Biol 2004;75:1156–65.CrossrefGoogle Scholar

  • 17.

    Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006;71:1397–421.CrossrefGoogle Scholar

  • 18.

    Rahman I, Biswas SK, Kirkham PA. Regulation ofinflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006;72:1439–52.CrossrefGoogle Scholar

  • 19.

    Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastictransformation: a target for cancer chemotherapy. Leukemia 2003;17:590–603.CrossrefGoogle Scholar

  • 20.

    Li Y, Sarkar FH. Inhibition of nuclear factor kappa-B activation in PC3 cells by genistein is mediated via akt signaling pathway. Clin Cancer Res 2002;7:2369–77.Google Scholar

  • 21.

    Tang FY, Nguyen N, Meydani M. Green tea catechins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of akt molecule. Int J Cancer 2003;106:871–8.CrossrefGoogle Scholar

  • 22.

    Gerhauser C, Klimo K, Heiss E, Neumann I, Gamal-Eldeen A, Knauft J, et al. Mechanism-based in vitro screening ofpotential cancer chemopreventive agents. Mutat Res 2003;523–524:163–72.Google Scholar

  • 23.

    Babu PV, Liu D. Green tea catechins and cardiovascular health: an update. Curr Med Chem 2008;15:1840–50.Google Scholar

  • 24.

    Labinskyy N, Csiszar A, Veress G, Stef G, Pacher P, Oroszi G, et al. Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr Med Chem 2006;13:989–96.CrossrefGoogle Scholar

  • 25.

    Kowalski J, Samojedny A, Paul M, Pietsz G, Wilczok T. Effect of apigenin, kaempferol and resveratrol on the expression of interleukin-1 beta and tumor necrosis factor-alpha genes in J774. 2 macrophages. Pharmacol Rep 2005;57:390–4.Google Scholar

  • 26.

    Rios LY, Gonthier MP, Remesy C, Mila I, Lapierre C, Lazarus SA, et al. Chocolate intake increases urinary excretion of polyphenol derived phenolic acids in healthy human subjects. Am J Clin Nutr 2003;77:912–18.Google Scholar

  • 27.

    Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, anti-oxidant and DNA repair mechanisms. Arch Dermatol Res 2010;302:71–83.CrossrefGoogle Scholar

  • 28.

    Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 2006;9:297–304.CrossrefGoogle Scholar

  • 29.

    Bohlmann J, Keeling CI. Terpenoid biomaterials. Plant J 2008;54:656–69.CrossrefGoogle Scholar

  • 30.

    Langenheim JH. Higher plant terpenoids: a phytocentricoverview of their ecological roles. J Chem Ecol 1994;20:1223–80.CrossrefGoogle Scholar

  • 31.

    Singh M, Pal M, Sharma RP. Biological activity of the labdane diterpenes. Planta Med 1999;65:2–8.CrossrefGoogle Scholar

  • 32.

    Paduch R, Kandefer-Szerszen M, Trytek M, Terpenes FJ. Substances useful in human healthcare. Arch Immunol Ther Exp 2007;55:315–27.CrossrefGoogle Scholar

  • 33.

    Wagner KH, Elmadfa I. Biological relevance of terpenoids. Overview focusing on mono, di-, and tetraterpenes. Ann Nutr Metabol 2003;47:95–106.CrossrefGoogle Scholar

  • 34.

    Lee S, Peterson CJ, Coats JR. Fumigation toxicity of mono-terpenoids to several stored product insects. J Stored Prod Res 2003;39:77–85.Google Scholar

  • 35.

    Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 2006;16:296–300.CrossrefGoogle Scholar

  • 36.

    Wang SY, Chen C, Wang CY, Chen P. Resveratrol content in strawberry fruit is affected by pre-harvest conditions. J Agric Food Chem 2007;55:8269–74.CrossrefGoogle Scholar

  • 37.

    Burns J, Yokota T, Ashihara H, Lean ME, Crozier A. Plant foods and herbal sources of resveratrol. J Agri Food Chem 2002;50:3337–40.CrossrefGoogle Scholar

  • 38.

    De Ruvo C, Amodio R, Algeri S, Martelli N, Intilangelo A,D’Ancona GM, et al. Nutritional antioxidants asanti-degenerative agents. Int J Dev Neurosci 2000;18:359–66.CrossrefGoogle Scholar

  • 39.

    Pendurthi UR, Williams JT, Rao LV. Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells: a possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol 1999;19:419–26.CrossrefGoogle Scholar

  • 40.

    Pozo-Guisado E, Alvarez-Barrientos A, Mulero-Navarro S,Santiago-Josefat B, Fernandez-Salguero PM. Theanti-proliferative activity of resveratrol results in apoptosisin MCF-7 but not in MDAMB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem Pharmacol 2002;64:1375–86.CrossrefGoogle Scholar

  • 41.

    Kim YA, Choi BT, Lee YT, Park DI, Rhee SH, Park KY, et al. Resveratrol inhibits cell proliferation and induces apoptosisof human breast carcinoma MCF-7 cells. Oncol Rep 2004;11:441–6.Google Scholar

  • 42.

    Tseng SH, Lin SM, Chen JC, Su YH, Huang HY, Chen CK, et al. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin Cancer Res 2004;10:2190–202.CrossrefGoogle Scholar

  • 43.

    Gusman J, Malonne H, Atassi G. A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 2001;22:1111–17.CrossrefGoogle Scholar

  • 44.

    Busquets S, Ametller E, Fuster G, Olivan M, Raab V, Argiles JM, et al. Resveratrol, a natural diphenol, reduces metastatic growth in an experimental cancer model. Cancer Lett 2006;245:144–8.Google Scholar

  • 45.

    Croteau R, Kutchan TM, Lewis NG. Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Joneas R, editors. Biochemistry and molecular biology of plants. Rockville, MD: American Society of Plant Biologists, 2000:1250–68.Google Scholar

  • 46.

    Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 2001;49:2774–9.CrossrefGoogle Scholar

  • 47.

    Kumar S, Andy A. Health promoting bioactive chemicals from brassica. Int Food Res J 2012;19:141–52.Google Scholar

  • 48.

    Hodek P, Trebil P, Stiborova M. Flavonoids- potent andversatile biologically active compounds interacting withcytochromes. Chem Biol Interact 2002;139:1–21.CrossrefGoogle Scholar

  • 49.

    Miller NJ, Larrea MB. Flavonoids and other plant phenols in the diet: their significance as antioxidants. J Nutr Environ Med 2002;12:39–51.CrossrefGoogle Scholar

  • 50.

    Sharma G, Prakash D, Gupta C. Phytochemicals ofnutraceutical importance: do they defend against diseases? In: Prakash D, Sharma G, editors. Phytochemicals ofnutraceutical importance. UK: CABI International Publishers, 2014:1–19.Google Scholar

  • 51.

    Nichenametla SN, Taruscio TG, Barney DL, Exon JH. A review of the effects and mechanism of polyphenolics in cancer. Crit Rev Food Sci Nutr 2006;46:161–83.CrossrefGoogle Scholar

  • 52.

    Ko KP, Park SK, Park B. Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean multicenter cancer cohort. Cancer Epidemiol Biomarkers Prev 2010;19:1292–300.Google Scholar

  • 53.

    Messina M, Erdman Jr J, Setchell KD. Introduction to and perspectives from the fifth international symposium on the role of soy in preventing and treating chronic disease. J Nutr 2004;134:1205S–6S.Google Scholar

  • 54.

    Zeng H, Chen Q, Zhao B. Genistein ameliorates β-amyloid peptide (25–35)- induced hippocampal neuronal apoptosis. Free Rad Biol Med 2004;36:180–8.Google Scholar

  • 55.

    Giles D, Wei H. Effect of structurally related flavones/isoflavones on hydrogen peroxide production and oxidative DNA damage in phorbol ester-stimulated HL-60 cells. Nutr Cancer 1997;29:77–82.CrossrefGoogle Scholar

  • 56.

    Patel RP, Boersma BJ, Crawford JH, Hogg N, Kirk M,Kalyanaraman B, et al. Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging. Free Rad Biol Med 2001;31:1570–81.Google Scholar

  • 57.

    Dutta D, Chaudhuri UR, Chakraborty R. Structure, healthbenefits, antioxidant property and processing and storage of carotenoids. Afr J Biotechnol 2005;4:1510–20.Google Scholar

  • 58.

    Britton G, Liaaen-Jemsen S, Carotenoids PH. Biosynthesis and metabolism. Basel, Switzerland: Birkauser Verlag, 1998.Google Scholar

  • 59.

    Krinsky NI. Antioxidant functions of carotenoids. Free Rad Biol Med 1989;7:617–35.Google Scholar

  • 60.

    Johnson EJ. The role of carotenoids in human health. Nutr Clin Care 2002;5:47–9.Google Scholar

  • 61.

    Elliott R. Mechanisms of genomic and non-genomic actions of carotenoids. Biochim Biophys Acta 2005;1740:147–54.CrossrefGoogle Scholar

  • 62.

    Ribaya-Mercado JD, Blumberg JB. Lutein and zeaxanthin and their potential roles in disease prevention. J Am Coll Nutr 2004;23:567S–87S.CrossrefGoogle Scholar

  • 63.

    Prakash D, Dhakarey R, Mishra A. Carotenoids: thephytochemicals of nutraceutical importance. Indian J Agric Biochem 2004;17:1–8.Google Scholar

  • 64.

    Stahl W. Bioactivity and protective effects of naturalcarotenoids. Biochim Biophys Acta 2005;1740:101–7.CrossrefGoogle Scholar

  • 65.

    Jewell C, O’Brien NM. Effect of dietary supplementation with carotenoids on xenobiotic metabolizing enzymes in the liver, lung, kidney and small intestine of the rat. Br J Nutr 1999;81:235–42.Google Scholar

  • 66.

    Paiva S, Russell R. Beta carotene and other carotenoids as antioxidants. J Am Coll Nutr 1999;18:426–33.CrossrefGoogle Scholar

  • 67.

    Klebanov GI, Kapitanov AB, Teselkin YO, Babenkova IV,Zhambalova BA, Lyubitsky OB, et al. The antioxidantproperties of lycopene. Membr Cell Biol 1998;12:287–300.Google Scholar

  • 68.

    Rao AV, Shen H. Effect of low dose lycopene intake onlycopene bioavailability and oxidative stress. Nutr Res 2002;22:1125–31.Google Scholar

  • 69.

    Neuman I, Nahum H, Ben-Amotz A. Reduction ofexercise-induced asthma oxidative stress by lycopene, anatural antioxidant. Allergy 2000;55:1184–9.CrossrefGoogle Scholar

  • 70.

    Srinivasan M, Sudhear AR, Pillai KR, Kumar PR, Sudhakaran R, Menon VP. Lycopene as a natural protector against gamma radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat’s hepatocytes in vitro. Biochim Biophys Acta 2007;177:659–65.CrossrefGoogle Scholar

  • 71.

    Gitenay D, Lyan B, Rambeau M, Mazur A, Rock E.Comparison of lycopene and tomato effects on biomarkers of oxidative stress in vitamin E deficient rats. Eur J Nutr 2007;46:468–75.CrossrefGoogle Scholar

  • 72.

    Ozaki Y, Ayano S, Inaba N, Miyake M, Berhow MA,Hasegawa S. Limonoid glucosides in fruit, juice andprocessing by-products of satsuma mandarin (Citrus unshiu Marcov.). J Food Sci 1995;60:186–9.CrossrefGoogle Scholar

  • 73.

    Lam LK, Zhang J, Hasegawa S. Citrus limonoid reduction of chemically induced tumorigenesis. Food Technol 1994;48:104–8.Google Scholar

  • 74.

    Lam LK, Hasegawa S. Inhibition of benzo[a]pyrene-induced forestomach neoplasia in mice by citrus limonoids. Nutr Cancer 1989;12:43–7.Google Scholar

  • 75.

    John S, Sorokin AV, Thompson PD. Phytosterols and vascular disease. Curr Opin Lipidol 2007;18:35–40.CrossrefGoogle Scholar

  • 76.

    Von Bergmann K, Sudhop T, Lutjohann D. Cholesterol and plant sterol absorption: recent insights. Am J Cardiol 2005;96:10D–14D.Google Scholar

  • 77.

    Dillard CJ, German JB. Review phytochemicals:nutraceuticals and human health. J Sci Food Agric 2000;80:1744–56.CrossrefGoogle Scholar

  • 78.

    Morabito N, Crisafulli A, Vergara C, Gaudio A, Lasco A, Frisina N, et al. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: arandomized double-blind placebo-controlled study. J Bone Mineral Res 2002;17:1904–12.CrossrefGoogle Scholar

  • 79.

    Mense SM, Hei TK, Ganju RK. Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ Health Perspect 2008;116:426–33.Google Scholar

  • 80.

    Dip R, Lenz S, Gmuender H. Pleiotropic combinatorialtranscriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol 2009;47:787–95.Google Scholar

  • 81.

    Sakamoto T, Horiguchi H, Oguma E. Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J Nutr Biochem 2010;21:856–64.CrossrefGoogle Scholar

  • 82.

    Fremont L. Biological effects of resveratrol. Life Sci 2000;66:663–73.CrossrefGoogle Scholar

  • 83.

    Cornwell T, Cohick W, Raskin I. Dietary phytoestrogens and health. Phytochemistry 2004;65:995–1016.CrossrefGoogle Scholar

  • 84.

    Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ. Phytoestrogens: recent developments. Planta Med 2003;69:589–99.Google Scholar

  • 85.

    Wiseman H. The bioavailability of non-nutrient plant factors: dietary flavonoids and phyto-oestrogens. Proc Nutr Soc 1999;58:139–46.CrossrefGoogle Scholar

  • 86.

    Fahey JW, Wehage SL, Holtzclaw WD, Kensler TW, Egner PA, Shapiro TA, et al. Protection of humans by plant glucosinolates: efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Prev Res 2012;5:603–11.Google Scholar

  • 87.

    Oerlemans K, Barrett DM, Bosch Suades C, Verkerk R, Dekker M. Thermal degradation of glucosinolates in red cabbage. Food Chem 2006;95:19–29.CrossrefGoogle Scholar

  • 88.

    Jeffery EH, Araya M. Physiological effects of broccoliconsumption. Phytochem Rev 2009;8:283–98.CrossrefGoogle Scholar

  • 89.

    Cartea ME, Velasco P. Glucosinolates in brassica foods:bioavailability in food and significance for human health. Phytochem Rev 2008;7:213–29.CrossrefGoogle Scholar

  • 90.

    Traka M, Mithen R. Glucosinolates, isothiocyanates and human health. Phytochem Rev 2009;8:269–82.CrossrefGoogle Scholar

  • 91.

    Hayes JD, Kelleher MO, Eggleston IM. The cancerchemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr 2008;47:73–88.Google Scholar

  • 92.

    Conaway CC, Getachun SM, Liebes LL, Pusateri DJ, Tophan DK, Botero-Omary M, et al. Disposition of glucosinolates and sulphoraphanes in human after ingestion of steam and fresh broccoli. Nutr Cancer 2001;38:168–78.Google Scholar

  • 93.

    Vig AP, Rampal G, Singh TS, Arora S. Bioprotective effects of glucosinolates – A review. LWT – Food Sci Technol 2009;42:1561–72.Google Scholar

  • 94.

    Institute of Medicine. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academy Press, 2002.Google Scholar

  • 95.

    Pawlosky RJ, Hibbeln JR, Novotny JA, Salem Jr N. Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res 2001;42:1257–65.Google Scholar

  • 96.

    Miggiano GA, Gagliardi L. Diet, nutrition and rheumatoid arthritis. Clin Ter 2005;156:115–23.Google Scholar

  • 97.

    Zak A, Tyrzicka E. Pathophysiology and clinical significance of polyunsaturated fatty acids n-3 family [in Czech]. Cas Lék Cesk 2005;144:6–18.Google Scholar

  • 98.

    Mori TA, Beilin LJ. Omega-3 fatty acids and inflammation. Curr Atheroscler Rep 2004;6:461–7.Google Scholar

  • 99.

    Simopoulos AP, Leaf A, Salem Hr N. Workshop statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 2000;63:119–21.Google Scholar

  • 100.

    Choung MG, Baek IY, Kang ST, Baek IY, Kang ST, Han WY, et al. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J Agric Food Chem 2001;49:5848–51.CrossrefGoogle Scholar

  • 101.

    Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 2007;51:675–83.CrossrefGoogle Scholar

  • 102.

    Xia X, Ling W, Ma J, Xia M, Hou M, Wang Q, et al. Ananthocyanin-rich extract from black rice enhancesatherosclerotic plaque stabilization in apolipoproteinE-deficient mice. J Nutr 2006;136:2220–5.Google Scholar

  • 103.

    Qin Y, Xia M, Ma J, Hao Y, Liu J, Mou H, et al. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr 2009;90:485–92.CrossrefGoogle Scholar

  • 104.

    Ghosh D, Konishi T. Anthocyanins and anthocyanin-richextracts: role in diabetes and eye function. Asia Pac J Clin Nutr 2007;16:200–8.Google Scholar

  • 105.

    Akkarachiyasit S, Charoenlertkul P, Yibchok-Anun S,Adisakwattana S. Inhibitory activities of cyanidin and itsglycosides and synergistic effect with acarbose against intestinal α-Glucosidase and pancreatic α-Amylase. Int J Mol Sci 2010;11:3387–96.CrossrefGoogle Scholar

  • 106.

    Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995;125:1401–12.Google Scholar

  • 107.

    MacFarlane GT, Cummings JH. Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health? Br Med J 1999;318:999–1003.CrossrefGoogle Scholar

  • 108.

    Baffoni L, Biavati B. Ecologia microbica dell’apparatodigerente. In: Biavati B, Sorlini C, editors. Microbiologia agroambientale. Milan: Casa Editrice Ambrosiana, 2008:147–62.Google Scholar

  • 109.

    Henke JM, Bassler BL. Bacterial social engagements. Trends Cell Biol 2004;14:648–56.CrossrefGoogle Scholar

  • 110.

    Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol 2004;4:953–64.Google Scholar

  • 111.

    Sanders ME. Considerations for use of probiotic bacteria to modulate human health. J Nutr 2000;130:384S–90S.Google Scholar

  • 112.

    Mercenier A, Pavan S, Pot B. Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharm Des 2002;8:99–110.Google Scholar

  • 113.

    Gilliland SE, Speck ML. Antagonistic action of Lactobacillus acidophilus toward intestinal and food-borne pathogens in associative cultures. J Food Prot 1977;40:820–3.Google Scholar

  • 114.

    De Roos NM, Katan MB. Effects of probiotic bacteria ondiarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am J Clin Nutr 2000;71:405–11.Google Scholar

  • 115.

    Gupta C, Prakash D, Rostagno MH, Callaway TR. Synbiotics: promoting gastrointestinal health. In: Prakash D, Sharma G, editors. Phytochemicals of nutraceutical importance. UK: CABI International Publishers, 2014:61–78.Google Scholar

  • 116.

    Prakash D, Sharma G. Phytochemicals of nutraceuticalimportance. In: Prakash D, Sharma G, editors. UK: CABI International Publishers, 2014:1–364.Google Scholar

  • 117.

    Global Nutraceuticals market. Infiniti research limited November 2013. Report Code: Infiniti Research Limited 3112, 2014–2018.Google Scholar

  • 118.

    Challener C. Speciality supplements are the bright spot in US dietary supplement market. Chem Market Rep 2003;3–8.Google Scholar

  • 119.

    Jones M. Controlled delivery technology in nutraceuticalapplications: a user’s perspective. Nutra Cos 2003.Google Scholar

About the article

Received: 2013-06-14

Accepted: 2014-05-20

Published Online: 2014-07-22

Published in Print: 2014-09-01


Citation Information: Journal of Complementary and Integrative Medicine, Volume 11, Issue 3, Pages 151–169, ISSN (Online) 1553-3840, ISSN (Print) 2194-6329, DOI: https://doi.org/10.1515/jcim-2013-0021.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
R. H.H. Pinto, C. Sena, O. V. Santos, W. A. Da Costa, A. M.C. Rodrigues, and R. N. Carvalho Junior
Grasas y Aceites, 2018, Volume 69, Number 2, Page 246
[3]
Javier Torregrosa-Crespo, Zaida Montero, Juan Fuentes, Manuel Reig García-Galbis, Inés Garbayo, Carlos Vílchez, and Rosa Martínez-Espinosa
Marine Drugs, 2018, Volume 16, Number 6, Page 203
[5]
Jennette Higgs, Emma Derbyshire, and Kathryn Styles
EFORT Open Reviews, 2017, Volume 2, Number 6, Page 300
[6]
Monika Mueller, Barbara Zartl, Agnes Schleritzko, Margit Stenzl, Helmut Viernstein, and Frank M. Unger
Bioprocess and Biosystems Engineering, 2017
[7]
[9]
Martha Rosales-Castro, Rubén F. González-Laredo, María José Rivas-Arreola, and Joseph Karchesy
Journal of Wood Chemistry and Technology, 2017, Volume 37, Number 5, Page 393
[10]
C. Mahendra, G. Manasa, B. L. Kiran, M. Murali, H. V. Girish, and M. S. Sudarshana
Journal of Herbs, Spices & Medicinal Plants, 2017, Volume 23, Number 3, Page 183
[11]
Bruno Bueno-Silva, Dione Kawamoto, Ellen S. Ando-Suguimoto, Severino M. Alencar, Pedro L. Rosalen, Marcia P. A. Mayer, and Gernot Zissel
PLOS ONE, 2015, Volume 10, Number 12, Page e0144954
[12]
Nidal Amin Jaradat, Ramzi Shawahna, Fatima Hussein, and Saad Al-Lahham
European Journal of Integrative Medicine, 2016, Volume 8, Number 5, Page 623
[13]
Laura Toppino, Lorenzo Barchi, Roberto Lo Scalzo, Eristanna Palazzolo, Gianluca Francese, Marta Fibiani, Antonietta D'Alessandro, Vincenza Papa, Vito A. Laudicina, Leo Sabatino, Laura Pulcini, Tea Sala, Nazzareno Acciarri, Ezio Portis, Sergio Lanteri, Giuseppe Mennella, and Giuseppe L. Rotino
Frontiers in Plant Science, 2016, Volume 7
[14]
Montserrat Rodrigo-Baños, Inés Garbayo, Carlos Vílchez, María Bonete, and Rosa Martínez-Espinosa
Marine Drugs, 2015, Volume 13, Number 9, Page 5508
[16]
Laëtitia Nowacki, Pascale Vigneron, Laura Rotellini, Hélène Cazzola, Franck Merlier, Elise Prost, Robert Ralanairina, Jean-Pierre Gadonna, Claire Rossi, and Muriel Vayssade
Phytotherapy Research, 2015, Volume 29, Number 12, Page 1964
[17]
Usune Etxeberria, Noemi Arias, Noemí Boqué, Ana Romo-Hualde, M. Teresa Macarulla, María P. Portillo, Fermín I. Milagro, and J. Alfredo Martínez
Food Funct., 2015, Volume 6, Number 8, Page 2758
[18]
Chaoqun Liu, Paul Chi-Lui Ho, Fang Cheng Wong, Gautam Sethi, Ling Zhi Wang, and Boon Cher Goh
Cancer Letters, 2015, Volume 362, Number 1, Page 8
[19]
Michael. S. Christodoulou, Adeline Thomas, Stéphane Poulain, Melita Vidakovic, Maija Lahtela-Kakkonen, Daumantas Matulis, Philippe Bertrand, Eva Bartova, Christophe Blanquart, Emmanuel Mikros, Nikolas Fokialakis, Daniele Passarella, Rachid Benhida, and Nadine Martinet
Med. Chem. Commun., 2014, Volume 5, Number 12, Page 1804

Comments (0)

Please log in or register to comment.
Log in