Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias


CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

Online
ISSN
1553-3840
See all formats and pricing
More options …

Antihyperlipidemic and antioxidant activities of the ethanolic extract of Garcinia cambogia on high fat diet-fed rats

Ramalingam Sripradha
  • Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magadi Gopalakrishna Sridhar
  • Corresponding author
  • Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nachimuthu Maithilikarpagaselvi
  • Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-21 | DOI: https://doi.org/10.1515/jcim-2015-0020

Abstract

Background: The study investigated the antihyperlipidemic and antioxidant activities of the ethanolic extract of Garcinia cambogia on high fat diet-fed rats.

Methods: The phytochemical constituents, total polyphenol content and ferric reducing antioxidant power (FRAP) were estimated in the G. cambogia extract (GE). Male Wistar rats were fed with either standard rodent diet or 30% high-fat diet and administered with GE at a dose of 400 mg/kg body weight/day for 10 weeks. At the end, lipid profile and oxidative stress parameters were estimated.

Results: The analyses revealed the presence of carbohydrates, proteins, sterols, tannins, flavonoids and saponins in GE. The total polyphenol content and FRAP of GE were 82.82±7.64 mg of gallic acid equivalents and 260.49±10.18 µM FRAP per gram of the GE. High-fat feeding elevated plasma total cholesterol (TC), triacylglycerol (TAG), non-high-density lipoprotein-cholesterol (non-HDL-C), malondialdehyde (MDA), reduced HDL-C and blood antioxidants, glutathione (GSH), glutathione peroxidase (GPx), catalase. Increase in total oxidant status (TOS), oxidative stress index (OSI) and decrease in the total antioxidant status (TAS) were observed in plasma, liver and kidney of fat-fed rats. Administration of GE decreased food intake, plasma TC, TAG, non HDL-C, MDA, increased HDL-C and blood antioxidants GSH, GPx, catalase. GE also reduced TOS, OSI and elevated TAS in plasma and liver of fat-fed rats. Renal OSI was significantly reduced upon GE treatment.

Conclusions: Our study demonstrated that GE is effective in ameliorating high-fat-diet-induced hyperlipidemia and oxidative stress.

Keywords: antioxidants; Garcinia cambogia; obesity; oxidants; phytochemicals; redox imbalance

References

  • 1. Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G, et al. Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med 2009;46:624–32.Web of ScienceGoogle Scholar

  • 2. World Health Organization. Fact sheet: obesity and overweight. Internet: http://www.who.int/mediacentre/factsheets/fs311/en/ (Accessed January 2015).

  • 3. Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab TEM. 2003;14:398–403.Google Scholar

  • 4. Yang ZH, Miyahara H, Takeo J, Katayama M. Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol Metab Syndr 2012;4:32.Google Scholar

  • 5. Kainuma M, Fujimoto M, Sekiya N, Tsuneyama K, Cheng C, Takano Y, et al. Cholesterol-fed rabbit as a unique model of nonalcoholic, nonobese, non-insulin-resistant fatty liver disease with characteristic fibrosis. J Gastroenterol 2006;41:971–80.Google Scholar

  • 6. McBride P. Triglycerides and risk for coronary artery disease. Curr Atheroscler Rep 2008;10:386–90.Google Scholar

  • 7. Tajima N, Kurata H, Nakaya N, Mizuno K, Ohashi Y, Kushiro T, et al. Pravastatin reduces the risk for cardiovascular disease in Japanese hypercholesterolemic patients with impaired fasting glucose or diabetes: diabetes subanalysis of the Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA) study. Atherosclerosis 2008;199:455–62.Google Scholar

  • 8. Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J Off Publ Fed Am Soc Exp Biol 2001;15:312–21.Google Scholar

  • 9. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752–61.Google Scholar

  • 10. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 2003 Jan91. Spec No:179–94.Google Scholar

  • 11. Wang X, Martindale JL, Liu Y, Holbrook NJ. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 1998;333:291–300.Google Scholar

  • 12. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002;23:599–622.Google Scholar

  • 13. Meydani M, Lipman RD, Han SN, Wu D, Beharka A, Martin KR, et al. The effect of long-term dietary supplementation with antioxidants. Ann N Y Acad Sci 1998;20:352–60.Google Scholar

  • 14. Saito M, Ueno M, Ogino S, Kubo K, Nagata J, Takeuchi M. High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 2005;43:411–19.Google Scholar

  • 15. Duke J, Bogenschutz-Godwin M, duCellier J, Duke PA. Handbook of medicinal herbs, 2nd ed. Boca Raton, FL: CRC Press, 2002:481.Google Scholar

  • 16. Chuah LO, Ho WY, Beh BK, Yeap SK. Updates on antiobesity effect of Garcinia Origin (-)-HCA. Evid Based Complement Altern Med ECAM 2013;doi: 10.1155/2013/751658.Crossref

  • 17. Dos Reis SB, de Oliveira CC, Acedo SC, Miranda DD, da C, Ribeiro ML, Pedrazzoli J, et al. Attenuation of colitis injury in rats using Garcinia cambogia extract. Phytother Res PTR 2009 Mar23:324–9.Google Scholar

  • 18. Mahendran P, Vanisree AJ, Shyamala Devi CS. The antiulcer activity of Garcinia cambogia extract against indomethacin-induced gastric ulcer in rats. Phytother Res PTR 2002;16:80–3.Google Scholar

  • 19. Oluyemi KA, Omotuyi IO, Jimoh OR, Adesanya OA, Saalu CL, Josiah SJ. Erythropoietic and anti-obesity effects of Garcinia cambogia (bitter kola) in Wistar rats. Biotechnol Appl Biochem 2007 Jan46:69–72.Google Scholar

  • 20. Hsu SC, Huang CJ. Reduced fat mass in rats fed a high oleic acid-rich safflower oil diet is associated with changes in expression of hepatic PPARalpha and adipose SREBP-1c-regulated genes. J Nutr 2006 Jul136:1779–85.Google Scholar

  • 21. Shivapriya S, Sandhiya S, Subhasree N, Aruna A, Dubey G. In vitro assessment of antibacterial and antioxidant activities of fruit rind extracts of Garcinia cambogia. L Int J Pharm Pharm Sci 2013;5:254–7.Google Scholar

  • 22. Harborne J. Phytochemical methods. New Delhi: Springer (India) Pvt. Ltd, 2005:17.Google Scholar

  • 23. Singleton VL, RossiJr JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. AmJ Enol Vitic 1965;16:144–58.Google Scholar

  • 24. Velioglu YS, Mazza G, Gao L, Oomah BD, Activity A. Total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 1998;46:4113–17.Google Scholar

  • 25. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 1996 Jul 15239:70–6.Google Scholar

  • 26. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882–8.Google Scholar

  • 27. Wendel A. Glutathione peroxidase. Methods Enzymol 1981;77:325–33.Google Scholar

  • 28. Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121–6.Google Scholar

  • 29. Agarwal R, Chase SD. Rapid, fluorimetric-liquid chromatographic determination of malondialdehyde in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2002;775:121–6.Google Scholar

  • 30. Sellamuthu PS, Arulselvan P, Kamalraj S, Fakurazi S, Kandasamy K. Protective nature of mangiferin on oxidative stress and antioxidant status in tissues of streptozotocin-induced diabetic rats. ISRN Pharmacology 2013;2013:750109 (10 pages).

  • 31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951 Nov193:265–75.Google Scholar

  • 32. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38:1103–11.Google Scholar

  • 33. Ahima RS. Digging deeper into obesity. J Clin Invest 2011;121:2076–9.Google Scholar

  • 34. Sripradha R, Magadi SG. Efficacy of garcinia cambogia on body weight, inflammation and glucose tolerance in high fat fed male wistar rats. J Clin Diagn Res JCDR. 2015 Feb;9(2):BF01–4.

  • 35. Jang WS, Choung SY. Antiobesity effects of the ethanol extract of Laminaria japonica Areshoung in high-fat-diet-induced obese rat. Evid-Based Complement Altern Med ECAM 2013;2013:492807.Google Scholar

  • 36. Suchitra M, Kumar M, Bitla A, Rao A, Alok S. Atherogenic dyslipidemia in diabetic nephropathy: lipoprotein (a), lipid ratios and atherogenic index. Int J Res Med Sci 2013;1:455–9.Google Scholar

  • 37. Sullivan AC, Triscari J, Hamilton JG, Miller ON, Wheatley VR. Effect of (-)-hydroxycitrate upon the accumulation of lipid in the rat. I Lipogenesis Lipids 1974;9:121–8.Google Scholar

  • 38. Tharachand IS. Mythili avadhani. Medicinal properties of Malabar Tamarind [Garcinia cambogia (Gaertn.) DESR. Int J Pharm Sci Rev Res 2013;19:101–7.Google Scholar

  • 39. Asha SK, Anila L, Vijayalakshmi NR. Flavonoids from Garcinia cambogia lower lipid levels in hypercholesterolemic rats. Food Chem 2001;72:289–94.Google Scholar

  • 40. Peng Y, Rideout D, Rakita S, Lee J, Murr M. Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver. Surg Obes Relat Dis Off J Am Soc Bariatr Surg 2012;8:73–81.Google Scholar

  • 41. Melov S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci 2000;908:219–25.Google Scholar

  • 42. Slatter DA, Bolton CH, Bailey AJ. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 2000;43:550–7.Google Scholar

  • 43. Meng R, Zhu D-L, Bi Y, Yang D-H, Wang Y-P. Anti-oxidative effect of apocynin on insulin resistance in high-fat diet mice. Ann Clin Lab Sci 2011;41:236–43.Google Scholar

  • 44. Just MJ, Recio MC, Giner RM, Cuéllar MJ, Máñez S, Bilia AR, et al. Anti-inflammatory activity of unusual lupane saponins from Bupleurum fruticescens. Planta Med 1998;64:404–7.Google Scholar

  • 45. Ruch RJ, Cheng SJ, Klaunig JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989;10:1003–8.Google Scholar

  • 46. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 1995;322:339–46.Google Scholar

  • 47. Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;8:950–88.Google Scholar

About the article

Received: 2015-03-27

Accepted: 2015-10-04

Published Online: 2015-11-21

Published in Print: 2016-03-01


Citation Information: Journal of Complementary and Integrative Medicine, Volume 13, Issue 1, Pages 9–16, ISSN (Online) 1553-3840, ISSN (Print) 2194-6329, DOI: https://doi.org/10.1515/jcim-2015-0020.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hanan A Mubarak, Manal M Mahmoud, Heba S Shoukry, Dina H Merzeban, Safinaz S Sayed, and Laila A Rashed
Clinical and Experimental Pharmacology and Physiology, 2018
[2]
Keri E Lunsford, Adam S Bodzin, Diego C Reino, Hanlin L Wang, and Ronald W Busuttil
World Journal of Gastroenterology, 2016, Volume 22, Number 45, Page 10071

Comments (0)

Please log in or register to comment.
Log in