Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Complementary and Integrative Medicine

Editor-in-Chief: Lui, Edmund

Ed. by Ko, Robert / Leung, Kelvin Sze-Yin / Saunders, Paul / Suntres, PH. D., Zacharias


CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.472
Source Normalized Impact per Paper (SNIP) 2017: 0.564

Online
ISSN
1553-3840
See all formats and pricing
More options …

Effect of ginseng therapy on diabetes and its chronic complications: lessons learned

Subrata ChakrabartiORCID iD: http://orcid.org/0000-0002-0208-1401 / Subhrojit Sen / Edmund Lui
  • Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-11 | DOI: https://doi.org/10.1515/jcim-2016-0166

Abstract

Ginseng played a significant role in the management of diabetes in China and in other Asian countries for a long period of time. It has a large number of pharmacological properties and is relatively free from adverse effects. As a part of Ontario Ginseng Research and Innovation Consortium, we investigated the effects of ginseng extract on diabetes and its complications. We demonstrated large number of beneficial effects of ginseng therapy and showed that these effects are possibly mediated through its antioxidant properties. Thus ginseng may lend itself as a relatively safe and inexpensive adjuvant treatment for diabetes and chronic diabetic complications.

Keywords: chronic complications; diabetes; ginseng; oxidative stress

References

  • 1.

    Weiss R. Herbal medicine. Gothenburg, Sweden: Beaconsfield Publishers LTD, 1988:176–177.Google Scholar

  • 2.

    Radad K, Gille G, Liu L, Rausch WD. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci. 2006;100:175–186.PubMedCrossrefGoogle Scholar

  • 3.

    Hoffman D. Medical herbalism: the science and practice of herbal medicine. Rochester, VT: Healing Arts Press, 2003:570–582.Google Scholar

  • 4.

    Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin. 2005;26:143–149.PubMedCrossrefGoogle Scholar

  • 5.

    Choo MK, Park EK, Han MJ, Kim DH. Antiallergic activity of ginseng and its ginsenosides. Planta Med. 2003;69:518–522.PubMedCrossrefGoogle Scholar

  • 6.

    Jeong HJ, Koo HN, Myung NI, Shin MK, Kim JW, Kim DK, et al. Inhibitory effects of mast cell-mediated allergic reactions by cell cultured Siberian ginseng. Immunopharmacol Immunotoxicol. 2001;23:107–117PubMedCrossrefGoogle Scholar

  • 7.

    Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 1999;58:1685–1693.CrossrefPubMedGoogle Scholar

  • 8.

    Wang AB, Wang CZ, Wu JA, Osinski J, Yuan CS. Determination of major ginsenosides in Panax qiunquefolius using high performance liquid chromatography. Phytochem Anal. 2005;16:272–277.PubMedCrossrefGoogle Scholar

  • 9.

    Lü JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol. 2009;7:293–302.CrossrefPubMedGoogle Scholar

  • 10.

    Qu CL, Bai YP, Jin XQ, et al. Studies on ginsenosides in different parts and ages of Panax qiunquefolius L. Food Chem. 2009;115:340–346.CrossrefGoogle Scholar

  • 11.

    Wang C, Aungi HH, Zhang B, et al. Chemopreventive effects of heat-processed Panax quinquefolius root on human breast cancer cells. Anticancer Res. 2008;28:2545–2552.PubMedGoogle Scholar

  • 12.

    Kim YK, Guo Q, Packer L. Free radical scavenging activity of red ginseng aqueous extracts. Toxicology. 2002;72:149–156.Google Scholar

  • 13.

    Duke J. The green pharmacy herbal handbook: your comprehensive reference to the best herbs for healing. Emmaus, PA: Rodale, 2000:115–116.Google Scholar

  • 14.

    Blumenthal M. The ABC clinical guide to herbs. New York, NY: Theime, 2003:211–225.Google Scholar

  • 15.

    Sotaniemi EA, Haapakoski E, Rautio A. Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care. 1995;18:1373–1375.CrossrefPubMedGoogle Scholar

  • 16.

    Reay JL, Kennedy DO, Scholey AB. Single doses of Panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity. J Psychopharmacol. 2005;19:357–365.PubMedCrossrefGoogle Scholar

  • 17.

    Vuksan V, Sung MK, Sievenpiper JL, et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebocontrolled study of efficacy and safety. Nutr Metab Cardiovasc Dis. 2008;18:46–56.CrossrefGoogle Scholar

  • 18.

    Kimura M, Waki I, Chujo T, et al. Effects of hypoglycemic components in ginseng radix on blood insulin level in alloxan diabetic mice and on insulin release from perfused rat pancreas. J Pharmaco Bio Dyn. 1981;4:410–417.CrossrefGoogle Scholar

  • 19.

    Xie JT, Mehendale SR, Wang A, et al. American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacol Res. 2004;49:113–117.CrossrefPubMedGoogle Scholar

  • 20.

    Xie JT, Mehendale S, Yuan CS. Ginseng and diabetes. Am J Chin Med. 2005;33:397–404.CrossrefPubMedGoogle Scholar

  • 21.

    Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells. Am J Ther. 2005;12:580–591.CrossrefPubMedGoogle Scholar

  • 22.

    Wajchenberg BL. Beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev. 2007;28:187–218.PubMedCrossrefGoogle Scholar

  • 23.

    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;14:813–820.Google Scholar

  • 24.

    Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “Causal” antioxidant therapy. Diabetes Care. 2003;26:1589–1596.PubMedCrossrefGoogle Scholar

  • 25.

    Azike CG, Charpentier PA, Jirui H, Hua P, Lui EM. The yin and yang actions of North American ginseng root in modulating the immune function of macrophages. Chin Med. 2011;6:21–32.CrossrefPubMedGoogle Scholar

  • 26.

    Sen S, Querques MA, Chakrabarti S. North American ginseng (Panax quinquefolius) prevents hyperglycemia and associated pancreatic abnormalities in diabetes. J Med Food. 2013;16:587–592 l.CrossrefPubMedGoogle Scholar

  • 27.

    Chung SH, Choi CG, Park SH. Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice. Arch Pharm Res. 2001;24:214–218.PubMedCrossrefGoogle Scholar

  • 28.

    Attele AS, Zhou YP, Xie JT, et al. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 2002;51:1851–1858.PubMedCrossrefGoogle Scholar

  • 29.

    Park E, Kim H, Kim Y, et al. Increase in insulin secretion induced by Panax ginseng berry extracts contributes to the amelioration of hyperglycemia in streptozotoc-induced diabetic mice. J Ginseng Res. 2012;36:153–160.CrossrefGoogle Scholar

  • 30.

    Choi S. Epidermis proliferative effect of the Panax ginseng ginsenoside Rb2. Arch Pharm Res. 2002;25:71–76.PubMedCrossrefGoogle Scholar

  • 31.

    Xiong Y, Ling S, Jiu KJ, et al. Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes. 2010;59:2502–2512.Google Scholar

  • 32.

    Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3–L1 adipocytes. J Endocrinol. 2008;198:561–569.CrossrefPubMedGoogle Scholar

  • 33.

    Luo JZ, Luo L. American ginseng stimulates insulin production and prevents apoptosis through regulation of uncoupling protein-2 in cultured β cells. Evidence Based Complement Alternat Med. 2006;3:365–372.CrossrefGoogle Scholar

  • 34.

    Kim HY, Kim K. Protective effect of Ginseng on cytokine-induced apoptosis in pancreatic β-Cells. Agric Food Chem. 2007;55:2816–2823.CrossrefGoogle Scholar

  • 35.

    Jeong KJ, Kim GW, Chung SH. AMP-activated protein kinase: an emerging target for ginseng. J Ginseng Res. 2014;38:83–88.PubMedCrossrefGoogle Scholar

  • 36.

    Liu C, Zhang M, Hu MY, Guo HF, Li J, Yu YL, et al. Increased glucagon-like peptide-1 secretion may be involved in antidiabetic effects of ginsenosides. J Endocrinol. 2013;217:185–196.CrossrefPubMedGoogle Scholar

  • 37.

    Sen S, Chen S, Feng B, Yuexiu W, Lui EK, Chakrabarti S. Preventive effects of North American ginseng (Panax quinquefolius) on diabetic retinopathy and cardiomyopathy. Phytother Res. 2012;27:290–298.PubMedGoogle Scholar

  • 38.

    Sen S, Chen S, Feng B, Yuexiu W, Lui EM, Chakrabarti S. Preventive effects of north American ginseng (Panax quinquefolium) on diabetic nephropathy. Phytomedicine. 2012;19:494–505.CrossrefPubMedGoogle Scholar

  • 39.

    Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M, et al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem. 2003;278:44230–44237.CrossrefPubMedGoogle Scholar

  • 40.

    Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2012;17:325–344.CrossrefPubMedGoogle Scholar

  • 41.

    Arai K, Maguchig S, Fujii S, Ishibashill H, Oikawa SK, Taniguch N. Glycation and inactivation of Cu-Zn superoxide dismutase. Identification of the in vitro glycated sites. J Biol Chem. 1987;262:16969–16972.PubMedGoogle Scholar

  • 42.

    Schreck R, Albermann K, Baeuerle PA. Nuclear factor kB: an oxidative stressresponsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17:221–237.CrossrefGoogle Scholar

  • 43.

    Chen S, Mukherjee S, Chakraborty C, Chakrabarti S. High glucose-induced, endothelin-dependent fibronectin synthesis is mediated via NF-kappa B and AP-1. Am J Physiol Cell Physiol. 2003;284:263–272.CrossrefGoogle Scholar

  • 44.

    Chen S, Khan ZA, Cukiernik M, Chakrabarti S. Differential activation of NF-κB and AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab. 2003;284:1089–1097.CrossrefGoogle Scholar

  • 45.

    Voces J, Alvarez AI, Vila L, Ferrando A, Oliveira CC, Prieto JG. Effects of administration of the standardized Panax ginseng extract G115 on hepatic antioxidant function after exhaustive exercise. Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol. 1999;123:175–184.CrossrefGoogle Scholar

  • 46.

    Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti–TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996;45:522–530.CrossrefPubMedGoogle Scholar

  • 47.

    Khan ZA, Chan BM, Uniyal S, Barbin YP, Farhangkhoee H, Chen S, et al. EDB fibronectin and angiogenesis-a novel mechanistic pathway. Angiogenesis. 2005;8:183–196.CrossrefPubMedGoogle Scholar

  • 48.

    Radovits T, Korkmaz S, Loganathan S, Barnucz IE, Bo¨Micke T, Arif R, et al. Comparative investigation of the left ventricular pressure-volume relationship in rat models of type 1 and type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol. 2009;297:125–133.CrossrefGoogle Scholar

  • 49.

    McKenna K, Smith D, Tormey W, Thompson CJ. Acute hyperglycemia causes elevation in plasma atrial natriuretic peptide concentrations in type 1 diabetes mellitus. Diabetic Med. 2002;17:512–517.Google Scholar

  • 50.

    Belke DD, Swanson EA, Dillmann WH. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes. 2004;53:3201–3208.CrossrefPubMedGoogle Scholar

  • 51.

    Nannipieri M, Seghieri G, Catalano C, Prontera T, Baldi S, Ferrannini E. Defective regulation and action of atrial natriuretic peptide in type 2 diabetes. Horm Metab Res. 2002;34:265–270.PubMedCrossrefGoogle Scholar

  • 52.

    Ortola FV, Ballermann BJ, Anderson S, Mendez RE, Brenner BM. Elevated plasma atrial natriuretic peptide levels in diabetic rats. Potential mediator of hyperfiltration. J Clin Invest. 1987;80:670–674.CrossrefPubMedGoogle Scholar

  • 53.

    Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS, et al. Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail. 2001;4:79–88.Google Scholar

  • 54.

    Liu TP, Liu IM, Cheng JT. Improvement of insulin resistance by Panax ginseng in fructose-rich chow-fed rats. Horm Metab Res. 2005;37:146–151.PubMedCrossrefGoogle Scholar

  • 55.

    Xie JT, Wang CZ, Li XL, Ni M, Fishbein A, Yuan CS. Anti-diabetic effect of American ginseng may not be linked to antioxidant activity: comparison between American ginseng and Scutellaria baicalensis using an ob/ob mice model. Fitoterapia. 2009;80:306–311.CrossrefPubMedGoogle Scholar

  • 56.

    Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS. Anti-hyperglycemic effects of ginseng: comparison between root and berry. Phytomedicine. 2003;10:600–605.PubMedCrossrefGoogle Scholar

  • 57.

    Sen S, Chen S, Feng B, Yuexiu W, Lui E, Chakrabarti S. American ginseng (Panax quinquefolius) prevents glucose-induced oxidative stress and associated endothelial cell abnormalities. Phytomedicine. 2011;18:1110–1117.CrossrefPubMedGoogle Scholar

  • 58.

    Ota K, Kameoka M, Tanaka Y, Itaya A, Yoshihara K. Expression of histone acetyltransferases was down-regulated in poly (ADP-ribose) polymerase-1-deficient murine cells. Biochem Biophys Res Commun. 2003;310:312–317.PubMedCrossrefGoogle Scholar

  • 59.

    Hassa PO, Buerki C, Lombardi C, Imhof R, Hottiger MO. Transcriptional coactivation of nuclear factor-kappaB-dependent gene expression by p300 is regulated by poly (ADP)-ribose polymerase-1. J Biol Chem. 2003;278:45145–45153.CrossrefPubMedGoogle Scholar

  • 60.

    Khan ZA, Farhangkhoee H, Mahon JL, Bere L, Gonder JR, Chan BM, et al. Endothelins: regulators of extracellular matrix protein production in diabetes. Exp Biol Med. 2006;231:1022–1029.Google Scholar

  • 61.

    Kwok HH, Ng WY, Yang MS, Mak NK, Wong RN, Yue PY. The ginsenoside protopanaxatriol protects endothelial cells from hydrogen peroxide-induced cell injury and cell death by modulating intracellular redox status. Free Radic Biol Med. 2010;48:437–445.PubMedCrossrefGoogle Scholar

  • 62.

    Harkey MR, Henderson GL, Gershwin ME, Stern JS, Hackman RM. Variability in commercial ginseng products: an analysis of 25 preparations. Am J Clin Nutr. 2001;73:1101–1106.CrossrefPubMedGoogle Scholar

  • 63.

    Jung CH, Seog HM, Iwm C, Choi HD, Cho HY. Effects of wild ginseng (Panax ginseng C.A. Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J Ethnopharmacol. 2005;98:245–250.CrossrefGoogle Scholar

  • 64.

    Qi LW, Wang CZ, Du GJ, Zhang ZY, Calway T, Yuan CS. Metabolism of Ginseng and its interactions with drugs. Curr Drug Metab. 2011;12:818–822.CrossrefPubMedGoogle Scholar

About the article

Received: 2016-12-21

Accepted: 2017-04-11

Published Online: 2017-05-11


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Supported by grant from Ministry of Research & Innovation, Ontario Research Fund.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.


Citation Information: Journal of Complementary and Integrative Medicine, Volume 14, Issue 4, 20160166, ISSN (Online) 1553-3840, DOI: https://doi.org/10.1515/jcim-2016-0166.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Min Gi Jo, Muhammad Ikram, Myeung Hoon Jo, Lang Yoo, Kwang Chul Chung, Seung-Yeol Nah, Hongik Hwang, Hyewhon Rhim, and Myeong Ok Kim
Molecular Neurobiology, 2018

Comments (0)

Please log in or register to comment.
Log in